首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The kinetic constants for an alkaline protease from Bacillus mojavensis were determined using a central composite circumscribed design (CCCD) where concentration of substrate (casein) and the assay temperature were varied around their center point. The K(m),V(max), K(cat), activation energy (E(a)) and temperature coefficient (q(10)) were determined and the values of these kinetic constants obtained were found comparable to that obtained with conventional methods. The Michaelis-Menten constant (K(m)) for casein decreased with corresponding increase in V(max), as reaction temperature was raised from 45-60 degrees C. The protease exhibited K(m) of 0.0357 mg/ml, 0.0270 mg/ml, 0.0259 mg/ml, and 0.0250 mg/ml at 45, 50, 55, and 60 degrees C, respectively, whereas V(max) values at these temperatures were 74.07, 99.01, 116.28, and 120.48 microg/ml/min, respectively, as determined by response surface methodology. The Arrhenius plot suggested that the enzyme undergoes thermal activation above 45 degrees C until 60-65 degrees C followed by thermal inactivation. Likewise, the energy of activation (E(a)) was more between 45-55 degrees C (9747 cal/mol) compared to E(a) between 50-60 degrees C (4162 cal/mol).  相似文献   

2.
M Yang  D Liu  D W Bolen 《Biochemistry》1999,38(34):11216-11222
This work determines the ratio of DeltaH(vH) /DeltaH(cal) for staphylococcal nuclease (SN) denaturation in guanidine hydrochloride (GdnHCl) to test whether GdnHCl-induced denaturation is two-state. Heats of mixing of SN as a function of [GdnHCl] were determined at pH 7.0 and 25 degrees C. The resulting plot of DeltaH(mix) vs [GdnHCl] exhibits a sigmoid shaped curve with linear pre- and post-denaturational base lines. Extending the pre- and post-denaturational lines to zero [GdnHCl] gives a calorimetric DeltaH (DeltaH(cal)) of 24.1 +/- 1.0 kcal/mol, for SN denaturation in the limit of zero GdnHCl concentration. Guanidine hydrochloride-induced denaturation Gibbs energy changes in the limit of zero denaturant concentration (DeltaG degrees (N)(-)(D)) at pH 7. 0 were determined for SN from fluorescence measurements at fixed temperatures over the range from 15 to 35 degrees C. Analysis of the resulting temperature-dependent DeltaG degrees (N)(-)(D) data defines a van't Hoff denaturation enthalpy change (DeltaH(vH)) of 26. 4 +/- 2.8 kcal/mol. The model-dependent van't Hoff DeltaH(vH) divided by the model-independent DeltaH(cal) gives a ratio of 1.1 +/- 0.1 for DeltaH(vH)/DeltaH(cal), a result that rules out the presence of thermodynamically important intermediate states in the GdnHCl-induced denaturation of SN. The likelihood that GdnHCl-induced SN denaturation involves a special type of two-state denaturation, known as a variable two-state process, is discussed in terms of the thermodynamic implications of the process.  相似文献   

3.
Thermal stabilization resulting from protein . protein association between two protein inhibitors (coded as 0.19, a dimer, and 0.28, a monomer) from wheat flour and the alpha-amylase from Tenebrio molitor L. (yellow mealworm) larvae was investigated by differential scanning calorimetry (heating rate 10 degrees C/min). Thermograms (plots of heat flow vs. temperature) for the two inhibitors showed broad endothermic peaks with the same extrema (denaturation temperatures) at 93 degrees C, and equal, small enthalpies of denaturation (2 cal/g). The amylase produced a sharp endotherm at 70.5 degrees C, but a larger enthalpy change on denaturation (6 cal/g). The amylase . inhibitor complexes differed in thermal stability, but both showed significant stabilization relative to free enzyme. The complex formed with monomeric inhibitor 0.28 showed a higher denaturation temperature (85.0 degrees C) than that formed with dimeric inhibitor 0.19 (80.5 degrees C). This order of stabilization agrees with the relative affinities of the inhibitors for the amylase. These thermograms are consistent with previous results which indicated that 1 mol of amylase binds 1 mol of inhibitor 0.19.  相似文献   

4.
It is unclear whether the thermal denaturation of staphylococcal nuclease is a two state, three state, or variable two state process. The thermal denaturation of wild-type staphylococcal nuclease was followed by tryptophan fluorescence and circular dichroism signal at 222 nm, forty-two and fourteen times, respectively. Analysis of this data using a simple two state model gave melting temperatures of 53.0+/-0.4 degrees C (fluorescence) and 52.7+/-0.6 degrees C (CD) and van't Hoff enthalpies of 82.4+/-2.6 kcal/mol and 88.6+/-4.2 kcal/mol. Ninety-seven mutants also had these parameters determined by both fluorescence and CD. The average difference between the melting temperatures was 1.05+/-0.75 degrees and the average difference between van't Hoff enthalpies was 1.6+/-4.8 kcal/mol. These very similar results for the two spectroscopic probes of structure are discussed in the context of the different models that have been proposed for nuclease denaturation. It is concluded, for most nuclease variants, that the errors introduced by a two state assumption are negligible and either virtually all helical structure is lost in any initial unfolding event or any intermediate must have low stability.  相似文献   

5.
A thermostable D-xylose-glucose isomerase was isolated from the thermophilic strain Streptomyces thermovulgaris 127, var. 7-86, as a result of mutagenic treatment by gamma-irradiation of the parent strain, by precipitation and sequential chromatographies on DEAE-Sephadex A50, TSK-gel, FPLC-Mono Q/HR, and Superose 12 columns. The N-terminal amino acid sequence and amino acid analysis shows 73-92% homology with xylose-glucose isomerases from other sources. The native molecular mass, determined by gel filtration on a Superose 12 column, is 180 kDa, and 44.6 and 45 kDa were calculated, based on amino acid analysis and 10% SDS-PAGE, respectively. Both, the activity and stability of the enzyme were investigated toward pH, temperature, and denaturation with guanidine hydrochloride. The enzyme activity showed a clear pH optimum between pH 7.2 and 9.0 with D-glucose and 7.4 and 8.3 with D-xylose as substrates, respectively. The enzyme is active up to 60-85 degrees C at pH 7.0, using D-glucose, and up to 50-60 degrees C at pH 7.6, using D-xylose as substrates. The activation energy (Ea = 46 kJ x mol(-1)) and the critical temperature (Tc = 60 degrees C) were determined by fluorescence spectroscopy. Tc is in close coincidence with the melting temperature of denaturation (Tm = 59 degrees C), determined by circular dichroism (CD) spectroscopy. The free energy of stabilization in water after denaturation with Gdn.HCl was calculated to be 12 k x mol(-1). The specific activity (km values) for D-xylose-glucose isomerase at 70 degrees C toward different substrates, D-xylose, D-glucose, and D-ribose, were determined to be 4.4, 55.5, and 13.3 mM, respectively.  相似文献   

6.
Several models have been proposed to explain the high temperatures required to denature enzymes from thermophilic organisms; some involve greater maximum thermodynamic stability for the thermophile, and others do not. To test these models, we reversibly melted two analogous protein domains in a two-state manner. E2cd is the isolated catalytic domain of cellulase E2 from the thermophile Thermomonospora fusca. CenAP30 is the analogous domain of the cellulase CenA from the mesophile Cellulomonas fimi. When reversibly denatured in a common buffer, the thermophilic enzyme E2cd had a temperature of melting (Tm) of 72.2 degrees C, a van't Hoff enthalpy of unfolding (DeltaHVH) of 190 kcal/mol, and an entropy of unfolding (DeltaSu) of 0.55 kcal/(mol*K); the mesophilic enzyme CenAP30 had a Tm of 56.4 degrees C, a DeltaHVH of 107 kcal/mol, and a DeltaSu of 0. 32 kcal/(mol*K). The higher DeltaHVH and DeltaSu values for E2cd suggest that its free energy of unfolding (DeltaGu) has a steeper dependence on temperature at the Tm than CenAP30. This result supports models that predict a greater maximum thermodynamic stability for thermophilic enzymes than for their mesophilic counterparts. This was further explored by urea denaturation. Under reducing conditions at 30 degrees C, E2cd had a concentration of melting (Cm) of 5.2 M and a DeltaGu of 11.2 kcal/mol; CenAP30 had a Cm of 2.6 M and a DeltaGu of 4.3 kcal/mol. Under nonreducing conditions, the Cm and DeltaGu of CenAP30 were increased to 4.5 M and 10.8 kcal/mol at 30 degrees C; the Cm for E2cd was increased to at least 7.4 M at 32 degrees C. We were unable to determine a DeltaGu value for E2cd under nonreducing conditions due to problems with reversibility. These data suggest that E2cd attains its greater thermal stability (DeltaTm = 15.8 degrees C) through a greater thermodynamic stability (DeltaDeltaGu = 6.9 kcal/mol) compared to its mesophilic analogue CenAP30.  相似文献   

7.
A Bertazzon  T Y Tsong 《Biochemistry》1989,28(25):9784-9790
High-resolution differential scanning calorimetry (DSC) has been employed to study the thermal stability of myosin, its major constitutive fragments (S-1, light chains, and rod), and also reconstituted thick filaments. The thermal denaturation of soluble myosin was complex and was characterized by a multistep endothermic process for the temperature range from 41 to 60 degrees C. The shape of the endotherm was highly dependent on the pH and the ionic strength of the solution, although the delta Hcal (calorimetric enthalpy) of denaturation (1715 +/- 75 kcal/mol) was insensitive to these changes for the solvent conditions used in this study. This value also agrees, within experimental error, with the sum of the denaturation enthalpies obtained for isolated fragments (1724 +/- 79 kcal/mol). In identical conditions of ionic strength, pH, and heating rate, the computer-calculated differential endotherms of domains belonging to S-1 and light chains were superimposable with those of the isolated fragments. Their responses to changes in the solvent condition were also similar. We suggest that the observed functional independence of the major domains in myosin reflects also the independence of their structural stability. The thermal unfolding of the isolated rod was multiphasic and readily reversible (95%). It occurred between 41 and 60 degrees C, with an delta Hcal of 1058 +/- 59 kcal/mol. The melting of S-1 showed a single peak at 46.3 +/- 0.1 degrees C with an delta Hcal of 255 +/- 12 kcal/mol. Light chains melted at 51.0 +/- 0.2 degrees C with an delta Hcal of 85 +/- 15 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Mukaiyama A  Takano K  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2004,43(43):13859-13866
Equilibrium and kinetic studies were carried out under denaturation conditions to clarify the energetic features of the high stability of a monomeric protein, ribonuclease HII, from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). Guanidine hydrochloride (GdnHCl)-induced unfolding and refolding were measured with circular dichroism at 220 nm, and heat-induced denaturation was studied with differential scanning calorimetry. Both GdnHCl- and heat-induced denaturation are very reversible. It was difficult to obtain the equilibrated unfolding curve of Tk-RNase HII below 40 degrees C, because of the remarkably slow unfolding. The two-state unfolding and refolding reactions attained equilibrium at 50 degrees C after 2 weeks. The Gibbs energy change of GdnHCl-induced unfolding (DeltaG(H(2)O)) at 50 degrees C was 43.6 kJ mol(-1). The denaturation temperature in the DSC measurement shifted as a function of the scan rate; the denaturation temperature at a scan rate of 90 degrees C h(-1) was higher than at a scan rate of 5 degrees C h(-1). The unfolding and refolding kinetics of Tk-RNase HII were approximated as a first-order reaction. The ln k(u) and ln k(r) values depended linearly on the denaturant concentration between 10 and 50 degrees C. The DeltaG(H(2)O) value obtained from the rate constant in water using the two-state model at 50 degrees C, 44.5 kJ mol(-1), was coincident with that from the equilibrium study, 43.6 kJ mol(-1), suggesting the two-state folding of Tk-RNase HII. The values for the rate constant in water of the unfolding for Tk-RNase HII were much smaller than those of E. coli RNase HI and Thermus thermophilus RNase HI, which has a denaturation temperature similar to that of Tk-RNase HII. In contrast, little difference was observed in the refolding rates among these proteins. These results indicate that the stabilization mechanism of monomeric protein from a hyperthermophile, Tk-RNase HII, with reversible two-state folding is characterized by remarkably slow unfolding.  相似文献   

9.
The nonpathogenic strain Arthrobacter nicotianae produces two sialidase isoenzymes, NA1 and NA2, with molecular masses of 65 kDa and 54 kDa, respectively, as determined by 10% SDS-polyacrylamide gel electrophoresis. NA1 and NA2 exhibit maximum activities at pH 4 and 5, and both show clear thermal optima at 40 degrees C. They are stable at temperatures up to 50 degrees C. The critical temperatures (T (c) = 50 degrees C and 51 degrees C) for the two isoenzymes were determined by fluorescence spectroscopy and correlate well with the temperatures of melting (T (m) = 49 degrees C and 48 degrees C), determined by CD spectroscopy. The isoenzymes are less stable against denaturation with Gdn.HCl, and the free energy of stabilization in water was calculated to be 7.6 and 8.0 kJ mol(-1), respectively. The specific activity (K (m) value) toward glucomacropeptide as a substrate was calculated to be 0.126 mM for NA1 and 0.083 mM for NA2.  相似文献   

10.
Globular protein thermostability is characterized the cold denaturation, maximal stability (Tms) and heat denaturation temperatures. For mesophilic globular proteins, Tms typically ranges from -25 degrees C to +35 degrees C. We show that the indirect estimate of Tms from calorimetry and the direct estimate from chemical denaturation performed in a range of temperatures are in close agreement. The heat capacity change of unfolding per mol residue (delta Cp) alone is shown to accurately predict Tms. Delta Cp and hence Tms can be predicted solely from the protein sequence. The average difference in free energy of unfolding at the observed and predicted values of Tms is 1.0 kcal mol(-1), which is small compared to typical values of the total free energy of unfolding.  相似文献   

11.
To go further into the characterization of the proteolysis exocellular system of the salmonid pathogen Flavobacterium psychrophilum, the purification and characterization of a novel protease designated Fpp2 (F. psychrophilum protease 2) was undertaken. A protease (Fpp2) hydrolyzing azocasein was purified. The Fpp2 can be defined as a metalloprotease, it had an estimated molecular mass of 62 kDa with calcium playing an important role in the thermostability of the enzyme. Proteolytic activity was optimal at pH 6.0-7.0 and 24 degrees C and activation energy for the hydrolysis of azocasein was determined to be 5.4 kcal mol(-1), being inactive at temperatures above 42 degrees C. All these results are characteristic of 'cold adapted enzymes'. Fpp2 proved to be a broad range hydrolytic enzyme because in optimal conditions it was able to hydrolyze matrix and muscular proteins. It can be concluded that the Fpp1, a previously characterized 55 kDa metalloprotease, and the Fpp2 protease were produced under different physiological conditions and were immunologically as well as biochemically different.  相似文献   

12.
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.  相似文献   

13.
The kinetics of denaturation by guanidine hydrochloride (GuHCl) of a thermostable phosphoglycerate kinase (PGK) extracted from Thermus thermophilus and of yeast PGK at neutral pH were studied by circular dichroism. Denaturation by GuHCl proceeded as a first-order reaction. The activation free energy of the denaturation reactions (delta Gf not identical to ) in the absence of GuHCl was estimated to be 32.7 kcal/mol for T. thermophilus PGK and 27.9 kcal/mol for yeast PGK (at 25 degrees C). Measurements of the rate constants at various temperatures indicated that delta Gf not identical to has maximum values at 29 degrees C for T. thermophilus PGK and at 20 degrees C for yeast PGK, and that the temperature dependences of delta Gf not identical to, delta Hf not identical to, and delta Sf not identical to for T. thermophilus PGK are smaller than those of yeast PGK. Values of delta Sf not identical to for thermal denaturation for both PGK's are approximately 200 e.u.  相似文献   

14.
We constructed a "temperature-jump/stopped-flow" apparatus that allows us to study fast enzyme reactions at extremely high temperatures. This apparatus is a redesigned stopped-flow which is capable of mixing the reactants on a submillisecond timescale concomitant with a temperature-jump even as large as 60 degrees C. We show that enzyme reactions that are faster than the denaturation process can be investigated above denaturation temperatures. In addition, the temperature-jump/stopped-flow enables us to investigate at physiological temperature the mechanisms of many human enzymes, which was impossible until now because of their heat instability. Furthermore, this technique is extremely useful in studying the progress of heat-induced protein unfolding. The temperature-jump/stopped-flow method combined with the application of structure-specific fluorescence signals provides novel opportunities to study the stability of certain regions of enzymes and identify the unfolding-initiating regions of proteins. The temperature-jump/stopped-flow technique may become a breakthrough in exploring new features of enzymes and the mechanism of unfolding processes.  相似文献   

15.
Despite decades of intense study, the complementarity of beta-lactams for beta-lactamases and penicillin binding proteins is poorly understood. For most of these enzymes, beta-lactam binding involves rapid formation of a covalent intermediate. This makes measuring the equilibrium between bound and free beta-lactam difficult, effectively precluding measurement of the interaction energy between the ligand and the enzyme. Here, we explore the energetic complementarity of beta-lactams for the beta-lactamase AmpC through reversible denaturation of adducts of the enzyme with beta-lactams. AmpC from Escherichia coli was reversibly denatured by temperature in a two-state manner with a temperature of melting (Tm) of 54.6 degrees C and a van't Hoff enthalpy of unfolding (deltaH(VH)) of 182 kcal/mol. Solvent denaturation gave a Gibbs free energy of unfolding in the absence of denaturant (deltaG(u)H2O) of 14.0 kcal/mol. Ligand binding perturbed the stability of the enzyme. The penicillin cloxacillin stabilized AmpC by 3.2 kcal/mol (deltaTm = +5.8 degrees C); the monobactam aztreonam stabilized the enzyme by 2.7 kcal/mol (deltaTm = +4.9 degrees C). Both acylating inhibitors complement the active site. Surprisingly, the oxacephem moxalactam and the carbapenem imipenem both destabilized AmpC, by 1.8 kcal/mol (deltaTm = -3.2 degrees C) and 0.7 kcal/mol (deltaTm = -1.2 degrees C), respectively. These beta-lactams, which share nonhydrogen substituents in the 6(7)alpha position of the beta-lactam ring, make unfavorable noncovalent interactions with the enzyme. Complexes of AmpC with transition state analog inhibitors were also reversibly denatured; both benzo(b)thiophene-2-boronic acid (BZBTH2B) and p-nitrophenyl phenylphosphonate (PNPP) stabilized AmpC. Finally, a catalytically inactive mutant of AmpC, Y150F, was reversibly denatured. It was 0.7 kcal/mol (deltaTm = -1.3 degrees C) less stable than wild-type (WT) by thermal denaturation. Both the cloxacillin and the moxalactam adducts with Y150F were significantly destabilized relative to their WT counterparts, suggesting that this residue plays a role in recognizing the acylated intermediate of the beta-lactamase reaction. Reversible denaturation allows for energetic analyses of the complementarity of AmpC for beta-lactams, through ligand binding, and for itself, through residue substitution. Reversible denaturation may be a useful way to study ligand complementarity to other beta-lactam binding proteins as well.  相似文献   

16.
Directed evolution study of temperature adaptation in a psychrophilic enzyme   总被引:10,自引:0,他引:10  
We have used laboratory evolution methods to enhance the thermostability and activity of the psychrophilic protease subtilisin S41, with the goal of investigating the mechanisms by which this enzyme can adapt to different selection pressures. A combined strategy of random mutagenesis, saturation mutagenesis and in vitro recombination (DNA shuffling) was used to generate mutant libraries, which were screened to identify enzymes that acquired greater thermostability without sacrificing low-temperature activity. The half-life of seven-amino acid substitution variant 3-2G7 at 60 degrees C is approximately 500 times that of wild-type and far surpasses those of homologous mesophilic subtilisins. The dependence of half-life on calcium concentration indicates that enhanced calcium binding is largely responsible for the increased stability. The temperature optimum of the activity of 3-2G7 is shifted upward by approximately 10 degrees C. Unlike natural thermophilic enzymes, however, the activity of 3-2G7 at low temperatures was not compromised. The catalytic efficiency, k(cat)/K(M), was enhanced approximately threefold over a wide temperature range (10 to 60 degrees C). The activation energy for catalysis, determined by the temperature dependence of k(cat)/K(M) in the range 15 to 35 degrees C, is nearly identical to wild-type and close to half that of its highly similar mesophilic homolog, subtilisin SSII, indicating that the evolved S41 enzyme retained its psychrophilic character in spite of its dramatically increased thermostability. These results demonstrate that it is possible to increase activity at low temperatures and stability at high temperatures simultaneously. The fact that enzymes displaying both properties are not found in nature most likely reflects the effects of evolution, rather than any intrinsic physical-chemical limitations on proteins.  相似文献   

17.
The thermal denaturation of the hemocyanin from gastropod Rapana thomasiana (RtH) at neutral pH was studied by means of differential scanning calorimetry (DSC). The denaturation was completely irreversible as judged by the absence of any endotherm on rescanning of previously scanned samples. Two transitions, with apparent transition temperatures (T(m)) at 83 and 90 degrees C, were detected by DSC using buffer 20 mM MOPS, containing 0.1 M NaCl, 5 mM CaCl(2) and 5 mM MgCl(2), pH 7.2. Both T(m) were dependent on the scanning rate, suggesting that the thermal denaturation of RtH is a kinetically controlled process. The activation energy (E(A)) of 597+/-20 kJ mol(-1) was determined for the main transition (at 83 degrees C). E(A) for the second transition was 615+/-25 kJ mol(-1). The T(m) and Delta H(cal) values for the thermal denaturation of RtH were found to be independent of the protein concentration, signifying that the dissociation of the protein into monomers does not take place before the rate-determining state of the process of thermal unfolding.  相似文献   

18.
The apparent second-order rate constant of hydrolysis of Fua-Gly-LeuNH2 by vimelysin, a neutral protease from Vibrio sp. T1800, was measured in a variable pressure-temperature gradient (0. 1-400 MPa and 5-40 degrees C). The apparent maximum rate was observed at approximately 15 degrees C and 150-200 MPa; the pressure-activation ratio (kcat/Km(max)/kcat/Km(0.1 MPa)) was reached about sevenfold. The pressure dependence of the kcat and Km parameters at constant temperature (25 degrees C) revealed that the pressure-activation below 200 MPa was mainly caused by a change in the kcat parameter. The change in the intrinsic fluorescence intensity of vimelysin was also measured in a pressure-temperature plane (0.1-400 MPa and -20 to +60 degrees C). The fluorescence intensity was found to decrease by increasing pressure and temperature, and the isointensity contours were more or less circular. The tangential lines to the contours at high temperatures and low to medium pressures seem to have slightly positive slopes, which was reflected by the higher residual activities left after incubations at higher temperatures and medium pressure (200 MPa and 50 degrees C) and by the almost intact secondary structure left after 1 h of incubation at 200 MPa and 40 degrees C, as studied by circular dichroism. These results were compared with the corresponding results for thermolysin, a moderately thermostable protease from Bacillus thermoproteolyticus. Apparent differences that might be related to the temperature adaptations of the respective source microbes are also discussed.  相似文献   

19.
Extracellular acid and alkaline proteases from Candida olea   总被引:3,自引:0,他引:3  
Candida olea 148 secreted a single acid protease when cultured at acidic pH. In unbuffered medium, the culture pH eventually became alkaline and a single alkaline protease was produced. This was the only proteolytic enzyme produced when the organism was grown in buffered medium at alkaline pH. Both proteolytic enzymes were purified to homogeneity (as assessed by SDS-PAGE). The Mr of the acid protease was 30900, the isoelectric point 4.5; optimum activity against haemoglobin was at 42 degrees C and pH 3.3. This enzyme was inactivated at temperatures above 46 degrees C and was inhibited by either pepstatin and diazoacetyl-norleucine methyl ester but was insensitive to inhibition by either 1,2-epoxy-3-(p-nitrophenoxy)-propane or compounds known to inhibit serine, thiol or metallo proteases. The acid protease contained 11% carbohydrate. The alkaline protease had an Mr of 23400 and isoelectric point of 5.4. The activity of this enzyme using azocoll as substrate above 42 degrees C and was inhibited by phenylmethyl-sulphonyl fluoride and irreversible inactivated by EDTA. The enzyme was also partially inhibited by DTT but was insensitive to either pepstatin or p-chloromercuribenzoic acid.  相似文献   

20.
An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158-163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 degrees C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 degrees C of HPH to 53 and 58.8 degrees C respectively. Specific activities and steady-state kinetics measured at 25 degrees C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号