首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four newly synthesized salts of ethoxyquin (EQ: 1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline), an antioxidant used in animal feeds, were evaluated with the use of the comet assay performed on human lymphocytes: ethoxyquin ascorbate, ethoxyquin hexanoate, ethoxyquin salicylate and ethoxyquin salt of Trolox C (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid). In the study the abilities of these compounds to cause DNA fragmentation and to protect against H2O2-induced DNA damage were analysed. The obtained results were compared with those noted earlier for EQ. After EQ salts treatments (1-25 microM) the genotoxic effects were observed, but the genotoxic potentials of the compounds studied were lower than that of EQ. On the other hand, EQ salts, similarly to EQ, effectively protected the cells from oxidative effect of H2O2. EQ hexanoate was the most effective and its antioxidant activity was even slightly higher than that of EQ. We suggest that it is worth further detailed studies to estimate its usefulness as a preservative.  相似文献   

2.
The chromosomal aberration test was employed to investigate the effect in vitro of a known antioxidant and food preservative, ethoxyquin (EQ, 1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) on human chromosomes. The studies were undertaken because there are no published in vitro data on genotoxicity of EQ in mammalian cells and there are many reports pointing out that it may be harmful to animals and human beings. Lymphocytes obtained from three healthy donors were incubated with EQ (0.01-0.5mM) both with and without metabolic activation. Stability studies performed by HPLC analysis showed that EQ was stable under the conditions of the lymphocyte cultures. The results of the chromosome aberration assay showed that EQ induces chromosome aberrations: gaps and breaks as well as dicentrics and atypical translocation chromosomes.  相似文献   

3.
The chromosomal aberration test was employed to investigate the effect in vitro of a known antioxidant and food preservative, ethoxyquin (EQ, 1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) on human chromosomes. The studies were undertaken because there are no published in vitro data on genotoxicity of EQ in mammalian cells and there are many reports pointing out that it may be harmful to animals and human beings. Lymphocytes obtained from three healthy donors were incubated with EQ (0.01–0.5 mM) both with and without metabolic activation. Stability studies performed by HPLC analysis showed that EQ was stable under the conditions of the lymphocyte cultures. The results of the chromosome aberration assay showed that EQ induces chromosome aberrations: gaps and breaks as well as dicentrics and atypical translocation chromosomes.  相似文献   

4.
Antimutagenic effect of an antioxidant in mammals   总被引:2,自引:0,他引:2  
H W Renner 《Mutation research》1984,135(2):125-129
To test a possible antimutagenic activity of ethoxyquin (EQ) in bone-marrow cells, 3 cytogenetic tests with distinct genetic end-points were applied. Cyclophosphamide (CPA), serving as test mutagen, and the antioxidant EQ were administered immediately following each other to Chinese hamsters by stomach tube. Whereas the CPA dose was the same in each test, the EQ doses were increased up to a ratio of CPA/EQ = 1:25, in some cases up to 1:50. The formation of SCEs induced by CPA was not influenced by EQ--even at the highest dose. In the micronucleus test, however, EQ drastically reduced the micronucleus rate even at the lowest dose applied (20 mg/kg) and abolished the CPA effects at a dose of 100 mg/kg. This action of EQ against CPA was also found in the rat and mouse in the micronucleus test system. Two inbred strains of mouse showed similar reactions, but the induced micronucleus rate was higher and its decrease in response to increasing doses of EQ was more delayed. In the chromosome aberration test, EQ also showed a distinct anticlastogenic response. At higher EQ doses, all CPA-induced chromosomal damage was reduced down to the level of spontaneous rates. The anticlastogenic effect of EQ was quantitatively similar in the micronucleus and chromosome aberration tests. Only minor qualitative differences were recognizable.  相似文献   

5.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
The effects of centrophenoxine, SaH-42-348, and DH-990 on several enzymes involved in aminophospholipid biosynthesis in brain have been examined in vitro. Relatively high concentrations of centrophenoxine were required to achieve 50% inhibition of the microsomal enzymes CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase (EPT), CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), phosphatidyl-N-methylethanolamine N-methyltransferase (PME-NMT), and phosphatidyl-N,N-dimethylethanolamine N-methyltransferase (PDE-NMT). Intermediate concentrations of SaH-42-348 inhibited CPT (IC50 = 2.0 mM), EPT (IC50 = 1.9 mM), PME-NMT (IC50 = 0.19 mM), and PDE-NMT (IC50 = 0.17 mM). Of the three drugs tested, DH-990 was the most potent inhibitor of the phospholipid-synthesizing enzymes. Phosphatidylserine decarboxylase, a mitochondrial inner-membrane enzyme [A. K. Percy, J. F. Moore, M. A. Carson, and C. J. Waechter (1983) Arch. Biochem. Biophys. 223, 484-494], was virtually unaffected by the three drugs added at millimolar concentrations. Kinetic analyses indicated that the inhibitory action of DH-990 on the brain enzymes was noncompetitive with respect to all substrates. The relatively high sensitivity of CPT (IC50 = 0.6 mM), EPT (IC50 = 2.2 mM), PME-NMT (IC50 = 2.5 microM), and PDE-NMT (IC50 = 2.5 microM) to inhibition by DH-990 in brain microsomes suggests that this compound may be useful for cellular studies on the possible relationships between phospholipid metabolism and neurobiological functions.  相似文献   

8.
Entamoeba histolytica: physiology of multidrug resistance   总被引:2,自引:0,他引:2  
Cross-resistance to unrelated drugs has been previously observed in multidrug-resistant carcinoma cells and the goal of this work was to determine whether a similar mechanism existed in Entamoeba histolytica. An emetine and a colchicine-resistant clone, C2(90) (IC50 = 62 microM, and 1.5 mM, respectively), and the parental clone, A (IC50 = 5 microM and 1 mM, respectively), were analyzed for resistance to other drugs and for the effect of verapamil. Both clones, C2(90) and A, exhibited similar resistance to both daunomycin (IC50 = 50 microM) and actinomycin D (IC50 = 13 nM). In the presence of verapamil, the IC50 for emetine was reduced to 0.5 microM, while the IC50 for colchicine was reduced to 0.3 mM. These results demonstrate that verapamil reverses both emetine and colchicine resistance in the mutant C2(90). In uptake experiments with [3H]emetine, drug accumulation was lower in resistant trophozoites. However, in the presence of verapamil, drug accumulation was increased in clone C2(90) to a level close to that of the parental strain, clone A. These results are consistent with observations made using malaria and multidrug-resistant tumor cells and suggest that a P-glycoprotein-like molecule may play a role in drug resistance in E. histolytica.  相似文献   

9.
10.
We studied the effects of aluminum salts on the degradation of human neurofilament subunits (NF-H, NF-M, and NF-L, the high, middle, and low molecular weight subunits, respectively) and other cytoskeletal proteins using calcium-activated neutral proteinase (calpain) purified from human brain. Calpain-mediated proteolysis of NF-L, tubulin, and glial fibrillary acidic protein (GFAP), three substrates that displayed constant digestion rates in vitro, was inhibited by AlCl3 (IC50 = 200 microM) and by aluminum lactate (IC50 = 400 microM). Aluminum salts inhibited proteolysis principally by affecting the substrates directly. After exposure to 400 microM aluminum lactate and removal of unbound aluminum, human cytoskeletal proteins were degraded two- to threefold more slowly by calpain. When cytoskeleton preparations were exposed to aluminum salt concentrations of 100 microM or higher, proportions of NF-M and NF-H formed urea-insoluble complexes of high apparent molecular mass, which were also resistant to proteolysis by calpain. Complexes of tubulin and of GFAP were not observed under the same conditions. Aluminum salts irreversibly inactivated calpain but only at high aluminum concentrations (IC50 = 1.2 and 2.1 mM for aluminum lactate and AlCl3, respectively), although longer exposure to the ion reduced by twofold the levels required for protease inhibition. These interactions of aluminum with neurofilament proteins and the effects on proteolysis suggest possible mechanisms for the impaired axoplasmic transport of neurofilaments and their accumulation in neuronal perikarya after aluminum administration in vivo.  相似文献   

11.
In this study pesticides with different chemical structures (dichlofluanid, endosulfan, simazine, tolylfluanid and triallate) were examined for their potential cytotoxic effect on proliferative activity of cell cultures of mammalian origin. Cell lines Madin-Darby Bovine Kidney (MDBK), Rabbit Kidney (RK13), Porcine Kidney (PK15), and semicontinual line of Bovine Embryonic Pulmonary Cells (BEPC) were used in the study. From these cell cultures cell proliferative activity was suppressed most intensively in PK15 culture by endosulfan (10(-1) - 10(-6) M). The least effect on cell proliferation in all cell cultures tested, with the exception PK 15 (10(-1) - 10(-2) M), was recorded after simazine exposure. On the basis of IC50 values the cytotoxic effect was: dichlofluanid (IC50 = 10(-3.94) M) > tolylfluanid (IC50 = 10(-3.69) M) > endosulfan (IC50 = 10(-3.24) M) > triallate (IC50 = 10(-3.12) M) > simazine (IC50 = 10(-1.78) M). The comparison of average IC50 values of cell cultures revealed that the most sensitive cell lines were PK15 (IC50 = 10(-3.27) M) and RK13 (IC50 = 10(-3.21) M), whereas MDBK (IC50 = 10(-2.55) M) and BEPC (IC50 = 10(-2.52) M) were less sensitive to pesticide exposure.  相似文献   

12.
Topoisomerase IIbeta knockout mouse cells (beta-/-) were found to have only slight resistance to m-AMSA, a dual topoisomerase IIalpha-IIbeta poison, as compared to wild-type cells (beta+/+) during 1 h or 3 day exposures to the drug. In contrast, the beta-/- cells were greater than threefold resistant to XK469, a selective topoisomerase IIbeta poison during three day drug exposures (beta+/+ IC(50) = 175 microM, beta-/- IC(50) = 581 microM). Short term (1 h) exposure to XK469 was not cytotoxic to either beta-/- or beta+/+ cells, suggesting that anticancer therapy with XK469 may be more efficacious if systemic levels can be prolonged. During studies on topoisomerase activity in nuclear extracts of the beta+/+ and beta-/- cells, we found evidence that XK469 is a weak topoisomerase I catalytic inhibitor. The high IC(50) for topoisomerase I inhibition (2 mM) suggests that topoisomerase I is not a significant target for XK469 cytotoxicity.  相似文献   

13.
Cultured chick cardiac cells possess a Na+K+Cl-co-transport system that is inhibited by the "loop diuretics" benzmetanide (IC50 = 0.3 microM), bumetanide (IC50 = 0.6 microM), piretanide (IC50 = 1.5 microM) and furosemide (IC50 = 5 microM). The K0.5 values for Cl- and Na+ activation of the bumetanide-sensitive 86Rb+ uptake are 59 mM and 40mM respectively. Bumetanide also inhibits a 22Na+ uptake component that is suppressed when external Cl- or K+ are substituted by impermeant ions. The ratio of bumetanide-sensitive 86Rb+ to 22Na+ uptake is close to 1. The cardiac Na+/K+/Cl- cotransport is a major uptake pathway for Na+ and K+. It accounts for 50% of the initial rate of 86Rb+ uptake and 17% of the initial rate of 22Na+ uptake by chick cardiac cells. It is activated two-fold by an hyperosmotic shock produced with 200 mM mannitol.  相似文献   

14.
15.
The bafilomycin A(1) and N-ethylmaleimide (NEM)-sensitive (V-type) ATPase was partially purified from the apical membrane-rich fractions of excretory system (Malpighian tubules and hind gut) of P. bufonius. Enzymatic activity was inhibited by bafilomycin A(1) (IC(50) = 1.3 nM) and NEM (IC(50) = 10.1 microM). The V-type ATPase activity is confined to the apical membrane fraction, while the activity of Na(+)/K(+) -ATPase forms the major part of the basal membrane fraction. The optimal pH required for maximal activity of V-type ATPase was pH 7.5. The effect of 30 mM of various salts on ATPase activity was investigated. NaCl and KCl caused increases of 175% and 184%, respectively. Other chloride salts also caused an increase in activity in the following ascending order: RbCl, LiCI, choline Cl, NaCI, KCl and tris-HCl. The activity of V-type ATPase was stimulated by a variety of different anions and cations, and HCO(3)(-) was found to be the most potent cationic activator of ATPase activity. The present results show that the properties of V-type ATPase of P. bufonius are similar to those reported for other insect tissues.  相似文献   

16.
The inner membrane of mitochondria possesses a pH-regulated anion uniporter which is activated by depletion of matrix divalent cations with A23187 (Beavis, A. D., and Garlid, K. D. (1987) J. Biol. Chem. 262, 15085-15093). It is now shown that Cl- transport through this pathway is inhibited by Mg2+ and Ca2+. There appear to be two sites for inhibition by Mg2+. One has an IC50 = 38 microM at pH 7.4 and appears to be on the inside since it is only observed in the presence of A23187 (10 nmol/mg). The other has an IC50 = 440 microM at pH 7.4 and appears to be on the outside since it is observed in mitochondria pretreated with very low doses of A23187 (0.25 nmol/mg or less) and in A23187-pretreated mitochondria washed to remove A23187. Ca2+ is found to inhibit anion uniport in the presence or absence of A23187 with an IC50 of about 17 microM. In contrast to these findings Cl- uniport, activated by addition of valinomycin to respiring mitochondria without depleting endogenous Mg2+ is found to be very insensitive to exogenous Mg2+, being inhibited with an IC50 of 3.2 mM. This is explained by examination of the pH dependence of the Mg2+ IC50 in non-respiring mitochondria. The internal IC50 is found to be pH-dependent, rising to about 250 microM at pH 8.4. The external IC50 is also pH-dependent, rising to 2.5 mM or above at pH 8.4. These data are consistent with a model in which Mg2+ can only bind to the protein when it is protonated at a site with a pK of about 6.8 located in the matrix. Thus, both the intrinsic activity of the uniporter and its inhibition by Mg2+ appear to be regulated by matrix protons. This makes the rate of anion uniport much more sensitive to changes in matrix pH which is physiologically advantageous for its proposed role in volume homeostasis.  相似文献   

17.
A compound was isolated and purified from heather flowers (Calluna vulgaris) based on its ability to inhibit lipoxygenase activity. This molecule was characterized as ursolic acid by GC-MS. Ursolic acid was found to be an inhibitor of both potato tuber 5-lipoxygenase and soybean 15-lipoxygenase with IC50 values of 0.3 mM. Ursolic acid also inhibits lipoxygenase activity in mouse peritoneal macrophages at 1 microM and HL60 leukemic cells growth (IC50 = 0.85 microM) as well as their DNA synthesis (IC50 = 1 microM). The possible role of lipoxygenase inhibition in the proliferation of leukemic cells is discussed.  相似文献   

18.
It is known that metallic complexes of methyl 2-pyridyl ketone thiosemicarbazone (HL1) and p-isopropyl benzaldehyde thiosemicarbazone (HL2) may have potential antitumor activity. We have prepared complexes of HL1 and HL2 with Zn(II) and Cd(II). The cytotoxic activity shown by these compounds against cell lines sensitive and resistant to cis-diamminedichloroplatinum(II) (cis-DDP) indicates that coupling of HL1 and HL2 to Zn(II) and Cd(II) centers may result in metallic complexes with important biological properties since they display IC50 values in a microM range similar to that of the antitumor drug cis-DDP. Moreover, it is interesting to note that the Zn/HL2 complex exhibits specific cytotoxic activity against Pam-ras cells (cis-DDP resistant cells which over-express the H-ras oncogene) with an in vitro therapeutic index of 3.26 versus 0.78 for cis-DDP. Treatment of Pam-ras cells with the IC50 value of the Zn/HL2 compound induces a 'DNA ladder' (fragmentation of genomic DNA in nucleosome units) indicative of apoptosis in this ras-transformed cell line. In contrast, a 'DNA smear' (non-specific fragmentation of genomic DNA) is observed in Pam 212 normal cells treated with the IC50 of this compound. The analysis by circular dichroism (CD) spectroscopy of the interaction of the Zn/HL2 compound with calf thymus DNA (CT DNA) indicates that it produces stronger alterations on the double helix conformation than cis-DDP. So, these results suggest that Zn/HL2 may be considered a potential antitumor agent.  相似文献   

19.
Apomine (SR-45023A) is a new antineoplastic compound which is currently in clinical trials and representative of the family of cholesterol synthesis inhibitors 1,1-bisphosphonate esters. Apomine inhibits growth of a wide variety of tumor cell lines with IC(50) values ranging from 5 to 14 microM. The antiproliferative activity of apomine was studied in comparison with that of other inhibitors of the mevalonate/isoprenoid pathway of cholesterol synthesis, simvastatin, farnesol, and 25-hydroxycholesterol. All these compounds inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Apomine (IC(50) = 14 microM), simvastatin (IC(50) = 3 microM), farnesol (IC(50) = 60 microM), and 25-hydroxycholesterol (IC(50) = 2 microM) inhibited HL60 cell growth. Growth inhibition due to simvastatin was reverted by mevalonate, whereas the antiproliferative activity of apomine, farnesol, and 25-hydroxycholesterol was not. Apomine triggered apoptosis in HL60 cells in less than 2 h. Apomine and farnesol induced caspase-3 activity at concentrations similar to their IC(50) values for cell proliferation, whereas a 10-fold excess of simvastatin was necessary to trigger apoptosis compared to its potency on proliferation. Caspase-3 activity was not induced by 25-hydroxycholesterol. The overall similar profile on mevalonate synthesis inhibition, cell growth inhibition, and apoptosis suggests that apomine acts as a synthetic mimetic of farnesol.  相似文献   

20.
In the present report, we demonstrate that Tb3+ binds to protein kinase C and serves as a luminescent reporter of certain cationic metal-binding sites. Tb3+ titration of 50 nM protein kinase C results in a 20-fold enhancement of Tb3+ luminescence which is half-maximal at 12 microM Tb3+. A Kd of approximately 145 nM was determined for Tb3+ binding to the enzyme. The excitation spectrum of bound Tb3+ exhibits a peak at 280 nm characteristic of energy transfer from protein tryptophan or tyrosine residues. The luminescence of this complex can be markedly decreased by other metals, including Pb2+ (IC50 = 25 microM), La3+ (IC50 = 50 microM), Hg2+ (IC50 = 300 microM), Ca2+ (IC50 = 6 mM), and Zn2+ (IC50 greater than 10 mM), and chelation of Tb3+ by 2 mM EGTA. Tb3+ binding to protein kinase C is correlated with its inhibition of protein kinase activity (IC50 = 8 microM), r = 0.99) and phorbol ester binding (IC50 = 15 microM, r = 0.98). Tb3+ inhibition of protein kinase C activity cannot be overcome by excess Ca2+, but can be partially overcome with excess phosphatidylserine or by chelation of Tb3+ with EGTA. Tb3+ noncompetitively inhibits phorbol ester binding by decreasing the maximal extent of binding without significantly altering binding affinity. The results suggest that the Tb3(+)-binding site is at or allosterically related to the enzyme's phosphatidylserine-binding site, but is distinct from the phorbol ester-binding domain and the Ca2(+)-binding site that regulates enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号