首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To examine the structural requirements of cytochrome P450 induction by 4-n-alkyl-substituted methylenedioxybenzenes (MDBs), rats were treated in vivo with a series of MDBs that differed in alkyl carbon side-chain length (0, 1, 2, 3, 4, 5, 6, or 8). Expression patterns of specific P450 isozymes were evaluated with Western and Northern blotting, enzymatic assays, and solution hybridization assays. As determined by carbon monoxide difference spectroscopy, maximal hepatic induction of total P450 content occurred when rats were treated with MDB derivatives with alkyl chain lengths of five or six carbons. However, maximum induction of the specific P450s--P450IA1, P450IIB1, and P450IIB2--occurred with n-hexyl-MDB. In contrast to effects observed with phenobarbital, treatment with MDBs resulted in higher levels of P450IIB2 than of P450IIB1 in rat hepatic microsomes. Western blot quantitation of MDB-induced hepatic P450IIB1 and P450IIB2 apoenzymes did not correlate to measured levels of the corresponding P450 mRNAs. In fact, P450IIB1 and P450IIB2 apoenzyme levels were consistently lower than expected based on Northern blot and solution hybridization measures of the respective mRNAs. These data suggest that the n-alkyl-MDBs effect increases in levels of hepatic P450 in a complex manner, producing accumulation of P450 mRNAs concomitant with alterations in processes regulating steady-state levels of P450 apoenzyme.  相似文献   

2.
Polysaccharides (0.5, 1 and 3 mg ml–1) from cultured broth and mycelia of Phellinus linteus inhibited cytochrome P450 (CYP) 1A1, CYP 1A2, CYP 2B1, and CYP 2E1 activities in rat liver microsomes. The polysaccharides from the broth of Phellinus linteus grown with 5% (v/v) mulberry extract had highest inhibitory potency for CYP 1A1, 1A2 and 2B1 activities. The most potent inhibitor of CYP 2E1 activity were the polysaccharides from the broth of Phellinus linteusgrown with 10% (v/v) mulberry extract.  相似文献   

3.
Cytochrome P450a was purified to electrophoretic homogeneity from liver microsomes from immature male Long-Evans rats treated with Aroclor 1254. Rabbit polyclonal antibody raised against cytochrome P450a cross-reacted with cytochromes P450b, P450e, and P450f (which are structurally related to cytochrome P450a). The cross-reacting antibodies were removed by passing anti-P450a over an N-octylamino-Sepharose column containing these heterologous antigens. The immunoabsorbed antibody recognized only a single protein (i.e., cytochrome P450a) in liver microsomes from immature male rats treated with Aroclor 1254 (i.e., the microsomes from which cytochrome P450a was purified). However, the immunoabsorbed antibody recognized three proteins in liver microsomes from mature male rats, as determined by Western immunoblot. As expected, one of these proteins (Mr 48,000) corresponded to cytochrome P450a. The other two proteins did not correspond to cytochromes P450b, P450e, or P450f (as might be expected if the antibody were incompletely immunoabsorbed), nor did they correspond to cytochromes P450c, P450d, P450g, P450h, P450i, P450j, P450k, or P450p. One of these proteins was designated cytochrome P450m (Mr approximately 49,000), the other cytochrome P450n (Mr approximately 50,000). Like cytochrome P450a, cytochrome P450n was present in liver microsomes from both male and female rats. However, whereas cytochrome P450a was detectable in liver microsomes from 1-week-old rats, cytochrome P450n was barely detectable until the rats were at least 3 weeks old. Furthermore, in contrast to cytochrome P450a, the levels of cytochrome P450n did not decline appreciably with age in postpubertal male rats. Cytochrome P450m was detectable only in liver microsomes from postpubertal (greater than 4 week-old) male rats. Cytochromes P450m and P450n were isolated from liver microsomes from mature male rats and purified to remove cytochrome P450a. When reconstituted with NADPH-cytochrome P450 reductase and lipid, cytochrome P450n exhibited little testosterone hydroxylase activity, whereas cytochrome P450m catalyzed the 15 alpha-, 18-, 6 beta-, and 7 alpha-hydroxylations of testosterone at 10.8, 4.6, 2.0, and 1.9 nmol/nmol P450/min, respectively. The ability of cytochrome P450m to catalyze the 7 alpha-hydroxylation of testosterone was not due to contamination with cytochrome P450a, which catalyzed this reaction at approximately 25 nmol/nmol P450a/min. Cytochrome P450m also converted testosterone to several minor metabolites, including androstenedione and 15 beta-, 14 alpha-, and 16 alpha-hydroxytestosterone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Western blots using a polyclonal and a monoclonal antibody raised against rat liver cytochrome P-450b indicate tissue-specific expression of low levels of cytochrome P-450's b and e. P-450b and P-450e were expressed very selectively in, respectively, lung and adrenal microsomes of untreated rats but neither isozyme was detected in the corresponding kidney or small intestine microsomes. The regioselectivity of microsomal metabolism of 7,12-dimethylbenz[a]anthracene (DMBA) as well as the sensitivity to inhibition by anti P-450b/e IgG established that low levels of "b-like" P-450's are functional in lung and adrenal microsomes from uninduced rats, but not in microsomes from the kidney or small intestine. Functional P-450c was also detected at low levels in liver, lung, kidney, and adrenals of untreated rats. Among the extrahepatic tissues examined, DMBA metabolism was the highest in rat adrenal microsomes. However, only 30% of this activity was due to P-450's b, e, or c. Phenobarbital (PB) treatment of rats increased microsomal DMBA metabolism in all extrahepatic tissues examined. The selectivity of this increase for 12-methyl hydroxylation of DMBA and the near complete inhibition by anti-P-450b/e are consistent with induction of P-450e even though P-450b was preferentially induced in each of the extrahepatic tissues examined. The levels of expression of P-450b were increased by PB in all sets of adrenal, lung, and intestinal microsomes and in three out of six sets of kidney microsomes. The levels of P-450e were also increased by PB in all sets of adrenal microsomes. Following PB treatment, P-450e became immunoquantifiable (greater than 2 pmol/mg protein) in three of six sets of lung and kidney microsomes but remained below detection in all sets of intestinal microsomes. Based on the activity of purified P-450e, undetectable levels (less than 1 pmol/mg protein) could account for increased DMBA metabolism in this tissue. The high constitutive level of P-450b in the lung (approximately 40 pmol/mg), was remarkably inactive in DMBA metabolism and was only slightly increased by PB treatment (50%). In contrast, PB treatment caused a 2.5- to 10-fold increase in 12-methyl hydroxylation of DMBA that was highly sensitive to anti-P-450b/e. A protein comigrating with P-450e was well above detection (6-7 pmol/mg) in two of six preparations of lung microsomes that showed highest induction of this activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Cytochrome P450 (P450) reactions are of interest because of their relevance to the oxidative metabolism of drugs, steroids, carcinogens, and other chemicals. One of the considerations about functional characterization is which steps of the catalytic cycle are rate-limiting. Detailed analysis indicates that several different steps can be rate-limiting with individual P450 reactions. N-Dealkylation of para-substituted N,N-dimethylanilines is a function of the electron withdrawing/donating properties of the substituent and the oxidation-reduction potential of the substrate, supporting a role in rate-limiting electron transfer from substrate to the high valent P450. In the oxidations of ethanol and acetaldehyde by human P450 2E1, a step following product formation must be the slow step (but not product release per se). Several oxidations catalyzed by human P450s 1A2 and 2D6 show slow C-H bond breaking, and apparent high-valent iron complexes accumulate in the reaction steady-state. Kinetic simulations were used to test the suitability of potential schemes and to probe the effects of changes in individual reaction steps.  相似文献   

6.
Cytochromes P450 beta NF-A, beta NF-B, and beta NF-C were purified from beta-naphthoflavone-treated adult hens. Cytochrome P450 beta NF-A, however, appeared at two places in the purification scheme. They were designated as cytochromes P450 beta NF-A1 and beta NF-A2 for property comparison. The cytochromes beta NF-A1 and beta NF-A2 were induced by both phenobarbital and beta-naphthoflavone treatment and were similar to P450 PB-A (previously purified from phenobarbital-induced hen livers) in molecular weights, isoelectric pH, spectral properties, behavior on chromatography columns, catalysis of substrates, immunological cross-reactivity on Ouchterlony plates and by immunoblotting, and NH2-terminal amino acid sequence. However, P450 PB-A differed from beta NF-A1/beta NF-A2 in peptide pattern after partial proteolysis by alpha-chymotrypsin and Staphylococcus aureus V8 protease, and complete digestion of 125I-labeled cytochromes by trypsin. The cytochrome P450 PB-A also differed from beta NF-A1/beta NF-A2, in that its antibodies cross-reacted with P-450 of normal, PB-, and beta-NF-induced rabbit liver microsomes. The cytochromes beta NF-B and beta NF-C, although immunochemically cross-reactive with each other, were distinct enzymes on the basis of molecular weights, spectral characteristics, isoelectric pH, peptide pattern on partial proteolysis, tryptic peptide pattern, cross-reactivity of their antibodies with other species, and NH2-terminal amino acid sequence. The most notable difference between beta NF-B and beta NF-C was that the anti-beta NF-C IgG completely inhibited O-dealkylation of 7-methoxyresorufin and 7-ethoxyresorufin by beta-NF-induced microsomes. These activities increased 40- to 50-fold in beta-NF-induced microsomes as compared to only 2- to 4-fold in PB-treated hens. The amino-terminal sequences of beta NF-B and beta NF-C were different from those of mammalian and other nonmammalian species.  相似文献   

7.
1. Monooxygenase activities have been examined in rat liver to determine the effects of castration and hypophysectomy on cytochrome P-450 species. In adult males, hypophysectomy caused a decrease of total P-450 concentration, aniline hydroxylase, benzopyrene hydroxylase, benzphetamine demethylase, testosterone hydroxylase and imipramine hydroxylase and demethylase activities. The treatment of hypophysectomized animals with human growth hormone or testosterone did not restore the full activity. 2. When probed with antibodies, microsomes from hypophysectomized males and females exhibited an intense reaction with a polyclonal anti-(phenobarbital-induced P-450) which was not observed with a monoclonal antibody of anti-(phenobarbital-induced P-450). 3. These microsomal preparations also reacted with an antibody raised against a developmentally regulated P-450. No sex difference could be detected with this antibody. Furthermore, administration of human growth hormone to hypophysectomized males prevented this immunoreaction. 4. Total RNA has been prepared from the same liver; when probed with cDNAs, no changes occurred in the content in P-450 b/e, PB 24 (a constitutive member of the phenobarbital subfamily) and phenobarbital-inducible mRNA for UDP-glucuronosyltransferase. 5. In contrast, P-450 mRNA induced by pregnenolone 16 alpha-carbonitrile was modulated by hormonal manipulations: lower in females and castrated males than in intact males, increased in both sexes after hypophysectomy. Treatment of hypophysectomized males with human growth hormone abolished this rise in pregnenolone-16 alpha-carbonitrile-induced P-450 mRNA accumulation. Data collected in this study support the assumption that hypophysectomy acts differently on the regulation of various P-450 isozymes and that this regulation clearly does not involve the phenobarbital subfamily of P-450s.  相似文献   

8.
9.
The hepatic metabolism of steroid hormones and of xenobiotics frequently depends on the expression of the sex-specific isoforms of cytochrome P-450 and on differences in sex hormones. Following biochemical, immunological and molecular biological investigations, it was shown that in adult rat liver there exist at least four male-specific and one female-specific isoforms of cytochrome P-450. The designation of these sex-specific genes is IIC11, IIIA2, IIC13 and IIA2 in males, and IIC12 in females. The irreversible programming of the expression of these isoforms of cytochrome P-450 in adulthood occurs during the perinatal period of life, and is named enzyme imprinting. One of the main factors that regulates the expression of the sex-specific isoforms of cytochrome P-450 is the level of androgens in the blood. Castration of adult rats decreased the level of the male isoforms of cytochrome P-450 and the activity of the monooxygenase enzyme system that remained higher than in intact females. The mechanism of enzyme imprinting can be explained as follows: neonatal androgens program the secretion of hypothalamic hormones, somatostatin and growth-hormone-releasing factor. These factors determine the type of growth hormone secretion in adult rats, and this controls the type of sex-specific isoforms of cytochrome P-450 expressed in adulthood. Metabolic regulation similar to that outlined above was shown to occur for several metabolism-dependent chemical carcinogens. Such a pathway may explain the different sensitivity displayed by male and female rats to treatment with these carcinogenic agents. One possible way of modulating the expression of some isoforms of cytochrome P-450 in adult rats is by treating neonates with specific xenobiotics that change the constitutive expression of neonatal androgens. It appears that this enzyme imprinting plays an important role in determining the individual sensitivity to the carcinogenic effects of chemicals.  相似文献   

10.
Hepatic mixed-function oxidase metabolism of the ubiquitous pollutant polychlorinated biphenyls (PCBs) is implicated in their toxification and detoxification. We used dichlorobiphenyls (DCBs) as models to investigate the effect of the chloro substituent sites on this metabolism experimentally and by molecular orbital calculations. Reconstituted, purified cytochrome P-450 PB-B and BNF-B, the major terminal oxidase isozymes of this system, from phenobarbital (PB)- and beta-naphthoflavone (BNF)-induced rats were used to investigate this metabolism. Both isozymes are also induced by PCBs. High-performance liquid chromatography (HPLC) was used to detect, quantify, and isolate metabolites. Metabolite structures were identified by mass spectrometry, dechlorination to identifiable hydroxybiphenyls, and HPLC retention times. All DCBs yielded 3- and 4- but no 2-monohydroxylated metabolites (3,3'-DCB also yielded a dihydroxy metabolite). Di-o-chloro-substituted DCBs were metabolized primarily by cytochrome P-450 PB-B, mono-o-chloro substituted DCBs by both isozymes approximately equivalently, and DCBs without o-chloro substituents by BNF-B primarily. Thus PB-B preferentially metabolizes noncoplanar DCBs and BNF-B coplanar DCBs. The cytochrome isozymes exhibited differing regioselectivities for DCB metabolism - PB-B hydroxylated unchlorinated phenyl rings and BNF-B chlorinated rings. Incorporation of epoxide hydrolase yielded DCB dihydrodiols, and hydroxy metabolite patterns were consistent with those calculated from ring-opened arene oxide intermediates. Thus the rates and regioselectivities of metabolism and thus possibly the toxicity and carcinogenicity of DCBs are dependent on the cytochrome P-450 isozymes induced.  相似文献   

11.
12.
The cytochrome P450 enzymes effect a wide range of oxidations in nature including difficult hydroxylation reactions of unactivated C-H. Most of the high energy reactions of these catalysts appear to involve highly electrophilic active species. Attempts to detect the reactive transients in the enzymes have met with limited success, but evidence has accumulated that two distinct electrophilic oxidants are produced in the P450 enzymes. The consensus electrophilic oxidant termed "iron-oxo" is usually thought to be an analogue of Compound I, an iron(IV)-oxo porphyrin radical cation species, but it is possible that a higher energy electronic isomer of Compound I is required to account for the facility of the C-H oxidation reactions. The second electrophilic oxidant of P450 is speculative; circumstantial evidence suggests that this species is iron-complexed hydrogen peroxide, but this oxidant might be a second spin state of iron-oxo. This overview discusses recent studies directed at detection of the electrophilic oxidants in P450 enzymes and the accumulated evidence for two distinct species.  相似文献   

13.
The localization and distribution of NADPH-cytochrome P450 reductase and cytochrome P450C-M/F were investigated immunohistochemically in the liver and the kidney of untreated rats employing both an unlabelled antibody peroxidase-antiperoxidase method and a peroxidase labelled primary antibody technique. In both immunohistochemical procedures, the reductase and P450C-M/F were detected in hepatocytes throughout the liver. In contrast, the reductase and P450C-M/F in the kidney were only detectable in the proximal tubule cells.  相似文献   

14.
15.
The regional expression of six different cytochrome P450 (CYP) forms in rat liver under constitutive and induced conditions was compared using immunological techniques. Immunostaining of consecutive thin sections from control liver revealed that the same hepatocytes, forming a 6-8 cells thick layer surrounding the terminal hepatic venules, were stained for CYP2B1/2, CYP2E1 and CYP3A1. Staining of CYP2A1 extended further into the midzonal region, whereas all cells of the acinus stained for CYPEtOH2. These results were supported by Western blot analysis of cell lysates from the periportal or perivenous region obtained by zone-restricted digitonin treatment during in situ perfusion. The data suggest three distinct patterns of constitutive P450 expression: perivenous-restricted (CYP2B1/2, CYP2E1 and CYP3A1); perivenous-dominated (CYP2A1) and panacinar (CYPEtOH2). Chronic exposure to ethanol caused induction of CYP2E1 in the same cells already being constitutively expressed, whereas CYPEtOH2 was more induced in the periportal area. The relative induction of CYP2B1/2, CYP3A1 and CYPEtOH2 after treatment with phenobarbital was stronger in periportal hepatocytes, resulting in levelling out of the initial perivenous dominance of CYP2B1/2 and CYP3A1, whereas CYPEtOH2 became periportal-dominated. Acetone induced CYP2E1, CYP2C11 and CYP3A1 selectively in the perivenous area. These studies indicate that a particular P450 isozyme is generally induced in the same cells where it is constitutively expressed, and that this regional selectivity is independent of the kind of inducer. The data suggest that, during maturation, the hepatocytes acquire various phenotypes in the periportal and perivenous region, to respond differently to endogenous and exogenous signals in the control of P450 expression.  相似文献   

16.
The levels of expression of cytochromes P-450b and P-450e (both inducible by phenobarbital (PB) and differing by only 14 of 491 amino acids) in liver microsomes from untreated male rats were separately quantitated by Western blotting with a polyclonal antibody raised against P-450b that is equally effective against P-450e (anti P-450b/e). A protein with mobility identical to P-450e was detected in all microsomal samples. Microsomes from uninduced livers of individual male rats from five different strains exhibited only minor interstrain and interindividual variability in the expression of P-450e (17 +/- 5 pmol P-450e/mg microsomal protein) with the exception of the Brown Norway strain (8.5 +/- 0.5 pmol P-450e/mg). Expression of P-450b varied widely from undetectable levels (less than 2 pmol/mg) in most Sprague-Dawley rats to about 50% of P-450e levels in Fischer and Brown Norway strains. Anti P-450b/e inhibited total metabolism of 7,12-dimethylbenz[a]anthracene (DMBA) by uninduced microsomes, to an extent dependent on rat strain (15-30%), predominantly through inhibition of formation of 12-hydroxymethyl-7-methyl BA (12HOMMBA) (65-85%), the major metabolite of purified P-450e. A specific activity for P-450e-dependent DMBA metabolism was calculated from four sets of microsomes where the P-450b content was either undetectable or very low (0.7-1.0 nmol/nmol P-450e/min-1). Comparable calculated activities were, however, obtained from other untreated rat liver microsomes where P-450b levels were significant. Polymorphism in P-450b was detected but did not affect total P-450b expression or the sensitivity of DMBA metabolism to anti P-450b/e. A fourth band of greater mobility than P-450b (apparent Mr less than 50,000), was also recognized by anti P-450b/e. The intensity of this band did not vary among individual rats or among the different strains and therefore did not correlate with the sensitivity of microsomal DMBA metabolism to anti P-450b/e. A monoclonal antibody (MAb) against P-450b (2-66-3) recognized P-450's b, b2, and e on Western blots but did not react with this higher mobility band. MAb 2-66-3 and two other MAbs produced against P-450b inhibited 12-methylhydroxylation of DMBA by untreated rat liver microsomes to the same extent as anti P-450b/e. Following PB induction, P-450b was induced to about double the level of P-450e in most rat strains examined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The effects of phenobarbital (PB), 3-methylcholanthrene (MC), and alpha-naphthoflavone (alpha-NF) on the synthesis of drug-inducible forms of cytochrome P-450, P-450(PB-1), and P-450(MC-1), and sex-specific forms of cytochrome P-450, P-450(M-1), and P-450(F-1), in male and female rats were studied. Whereas P-450(PB-1) and P-450(MC-1) in liver microsomes were markedly induced in both sexes by treatment with PB and MC, respectively, the contents of P-450(M-1) and P-450(F-1) were significantly decreased by the treatments. alpha-NF, which is not a P-450 inducer, did not change the contents of sex-specific forms of cytochrome P-450. The translatable mRNAs of the P-450s were also determined by using an in vitro translation system. The mRNAs coding for P-450(PB-1) and P-450(MC-1) were increased by drug administrations. On the other hand, the mRNAs coding for P-450(M-1) and P-450(F-1) were transiently decreased by the drugs, and then returned to the normal levels. The time courses of the induction of the drug-inducible P-450s and the repression of the sex-specific P-450s showed no close correlation. alpha-NF had no effect on the synthesis of P-450(M-1) and P-450(F-1). We also found that the synthesis of P-450(M-1) in the livers of untreated rats showed no diurnal variations.  相似文献   

18.
Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.  相似文献   

19.
Three novel cytochrome P450 isozymes were purified from phenobarbital (PB)-treated D2 mouse liver microsomes and compared to the previously characterized coumarin 7-hydroxylase, P450Coh. The molecular masses were 56.5, 55, 51, and 49.5 kDa, and the peaks of the reduced CO complexes were at 450, 447.5, 451.5, and 449 nm for P450PBI, P450PBII, P450PBIII, and P450Coh, respectively. The NH2-terminal sequences suggest that these isozymes belong to the P450 gene subfamilies 2B, 1A, 2C, and 2A, respectively. On the basis of reconstituted activities and microsomal immunoinhibition studies, P450Coh was the sole catalyst of coumarin 7-hydroxylation. P450PBI was the major isozyme catalyzing the high Km 7-pentoxyresorufin O-dealkylation. This reaction was also mediated at a slower rate by the low Km isozyme, P450PBII. P450PBIII contributed significantly to the microsomal O-deethylation of 7-ethoxyresorufin and N-demethylation of benzphetamine. Western blotting and dot immunobinding analyse of microsomes showed that the induction patterns of the isozymes were different. PB and TCPO-BOP induced all isozymes variably: P450PBI (19- and 31-fold), P450PBII (2- and 3-fold), P450PBIII (9- and 4-fold), and P450Coh (about 2-fold). Pyrazole induced only P450Coh, while all other isozymes were decreased by 30 to 60%. The changes in the microsomal amounts of these isozymes correlated generally well with the variation in the immunoinhibitable enzyme activities. On the basis of the structural and catalytic properties, immunochemical characteristics, and induction profiles, all three isozymes were different from each other and from the previously characterized P450Coh. This mouse PB-inducible P450 model may be valuable in further studies on the induction mechanisms of PB and TCPOBOP.  相似文献   

20.
Studies initiated to investigate the expression of cytochrome P450 2E1 (CYP2E1) in rat brain demonstrated low but detectable protein and mRNA expression in control rat brain. Though mRNA and protein expression of CYP2E1 in brain was several fold lower as compared to liver, relatively high activity of N-nitrosodimethylamine demethylase (NDMA-d) was observed in control rat brain microsomes. Like liver, pretreatment with CYP2E1 inducers such as ethanol or pyrazole or acetone significantly increased the activity of brain microsomal NDMA-d. Kinetic studies also showed an increase in the Vmax and affinity (Km) of the substrate towards the brain enzyme due to increased expression of CYP2E1 in microsomes of brain isolated from ethanol pretreated rats. In vitrostudies using organic inhibitors, specific for CYP2E1 and anti-CYP2E1 significantly inhibited the brain NDMA-d activity indicating that like liver, NDMA-d activity in rat brain is catalyzed by CYP2E1. Olfactory lobes exhibited the highest CYP2E1 expression and catalytic activity in control rats. Furthermore, several fold increase in the mRNA expression and activity of CYP2E1 in cerebellum and hippocampus while a relatively small increase in the olfactory lobes and no significant change in other brain regions following ethanol pretreatment have indicated that CYP2E1 induction maybe involved in selective sensitivity of these brain areas to ethanol induced free radical damage and neuronal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号