首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Laubinger  P Dimroth 《Biochemistry》1988,27(19):7531-7537
The ATP synthase (F1F0) of Propionigenium modestum has been purified to a specific ATPase activity of 5.5 units/mg of protein, which is about 6 times higher than that of the bacterial membranes. Analysis by SDS gel electrophoresis indicated that in addition to the five subunits of the F1 ATPase, subunits of Mr 26,000 (a), 23,000 (b), and 7500 (c) have been purified. The ATPase activity of F1F0 was specifically activated about 10-fold by Na+ions. The enzyme was strongly inhibited by dicyclohexylcarbodiimide, venturicidin, tributyltin chloride, and azide. After incubation with [14C]dicyclohexylcarbodiimide, about 3-4 mol of the inhibitor was bound per 500,000 g of the enzyme. The radioactive label was specifically bound to submit c. These subunits form stable aggregates which resist dissociation by SDS at 100 degrees C. The monomer is formed upon heating with SDS to 121 degrees C or by extraction of the membranes with chloroform/methanol. The ATP synthase was incorporated into liposomes by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes catalyzed the transport of Na+ions upon ATP hydrolysis. The transport was completely abolished by dicyclohexylcarbodiimide. Whereas monensin prevented the accumulation of Na+ions, the uptake rate was stimulated 4-5-fold in the presence of valinomycin or carbonyl cyanide m=chlorophenylhydrazone. These results indicate an electrogenic Na+ transport and also that it is a primary event and not accomplished by a H+-translocating ATP synthase in combination with a Na+/H+ antiporter.  相似文献   

2.
Mechanisms of sodium transport in bacteria   总被引:5,自引:0,他引:5  
In some bacteria, an Na+ circuit is an important link between exergonic and endergonic membrane reactions. The physiological importance of Na+ ion cycling is described in detail for three different bacteria. Klebsiella pneumoniae fermenting citrate pumps Na+ outwards by oxaloacetate decarboxylase and uses the Na+ ion gradient thus established for citrate uptake. Another possible function of the Na+ gradient may be to drive the endergonic reduction of NAD+ with ubiquinol as electron donor. In Vibrio alginolyticus, an Na+ gradient is established by the NADH: ubiquinone oxidoreductase segment of the respiratory chain; the Na+ gradient drives solute uptake, flagellar motion and possibly ATP synthesis. In Propionigenium modestum, ATP biosynthesis is entirely dependent on the Na+ ion gradient established upon decarboxylation of methylmalonyl-CoA. The three Na(+)-translocating enzymes, oxaloacetate decarboxylase of Klebsiella pneumoniae, NADH: ubiquinone oxidoreductase of Vibrio alginolyticus and ATPase (F1F0) of Propionigenium modestum have been isolated and studied with respect to structure and function. Oxaloacetate decarboxylase consists of a peripheral subunit (alpha), that catalyses the carboxyltransfer from oxaloacetate to enzyme-bound biotin. The subunits beta and gamma are firmly embedded in the membrane and catalyse the decarboxylation of the carboxybiotin enzyme, coupled to Na+ transport. A two-step mechanism has also been demonstrated for the respiratory Na+ pump. Semiquinone radicals are first formed with the electrons from NADH; subsequently, these radicals dismutate in an Na(+)-dependent reaction to quinone and quinol. The ATPase of P. modestum is closely related in its structure to the F1F0 ATPase of E. coli, but uses Na+ as the coupling ion. A specific role of protons in the ATP synthesis mechanism is therefore excluded.  相似文献   

3.
F0F1-ATPase has been isolated from the marine alkali-resistant bacterium Vibrio alginolyticus. The enzyme subunits cross-reacted with antibodies against subunits alpha, beta, gamma, epsilon, and b of E. coli ATPase. The purified ATPase was reconstituted into liposomes effecting an ATP-dependent uptake of H+. Proton transport was inhibited by the ATPase blockers DCCD, triphenyltin, and venturicidin. Na+ ions had no effect on ATP-dependent proton transport. No ATP-dependent transport of Na+ was detected in proteoliposomes.  相似文献   

4.
The F1F0-ATP synthase from the alkaliphilic Bacillus firmus OF4 was purified in a reconstitutively active form, in good yield and with a high specific ATPase activity when appropriately activated. The purification procedure involved octyl glucoside extraction of washed membrane vesicles in the presence of 20% glycerol and asolectin followed by ammonium sulfate fractionation and sucrose density gradient centrifugation. The purified preparation was resolved into seven bands by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, corresponding to the five F1 subunits, alpha, beta, gamma, delta, and epsilon, and to the b and c subunits of the F0. Two-dimensional sodium dodecyl sulfate-poly-acrylamide gel analysis revealed a candidate for the alpha subunit of F0. The MgATPase activity of B. firmus OF4 F1F0 was barely detectable but could be stimulated, optimally more than 100-fold, by sulfite, methanol, and octyl thioglucoside. The enzyme was inhibited by N,N'-dicyclohexylcarbodiimide and sodium azide, but not by aurovertin, an inhibitor of the F1 from Escherichia coli. The F1F0 reconstituted into proteoliposomes catalyzed ATPase activity, ATP-Pi exchange, and ATP-dependent delta pH and delta psi formation. ATP hydrolysis was stimulated by protonophores while the other activities were abolished by protonophores. These activities were neither dependent on added sodium ions nor significantly affected by them. F1F0 proteoliposomes made from crude octyl glucoside extracts that also contained the Na+/H+ antiporter were shown to catalyze ATP-dependent Na+ uptake that was completely sensitive to carbonyl cyanide m-chlorophenyl-hydrazone; Na+ uptake activity was absent in proteoliposomes containing more purified F1F0 but lacking the Na+/H+ antiporter. These data show that the F1F0 translocates protons and does not substitute Na+ for H+ in energy coupling.  相似文献   

5.
Complex I is the site for electrons entering the respiratory chain and therefore of prime importance for the conservation of cell energy. It is generally accepted that the complex I-catalysed oxidation of NADH by ubiquinone is coupled specifically to proton translocation across the membrane. In variance to this view, we show here that complex I of Klebsiella pneumoniae operates as a primary Na+ pump. Membranes from Klebsiella pneumoniae catalysed Na+-stimulated electron transfer from NADH or deaminoNADH to ubiquinone-1 (0.1-0.2 micromol min-1 mg-1). Upon NADH or deaminoNADH oxidation, Na+ ions were transported into the lumen of inverted membrane vesicles. Rate and extent of Na+ transport were significantly enhanced by the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP) to values of approximately 0.2 micromol min-1 mg-1 protein. This characterizes the responsible enzyme as a primary Na+ pump. The uptake of sodium ions was severely inhibited by the complex I-specific inhibitor rotenone with deaminoNADH or NADH as substrate. N-terminal amino acid sequence analyses of the partially purified Na+-stimulated NADH:ubiquinone oxidoreductase from K. pneumoniae revealed that two polypeptides were highly similar to the NuoF and NuoG subunits from the H+-translocating NADH:ubiquinone oxidoreductases from enterobacteria.  相似文献   

6.
Cells of the thermoacidophilic bacterium Bacillus acidocaldarius express a high-affinity K+-uptake system when grown at low external K+. A vanadate-sensitive, K+- and Mg2+-stimulated ATPase was partially purified from membranes of these cells by solubilization with a non-ionic detergent followed by ion-exchange chromatography of the extract. Combinations of non-denaturing and denaturing electrophoretic separation methods revealed that the ATPase complex consisted of three subunits with molecular weights almost identical to those of the KdpA, B and C proteins, which together form the Kdp high-affinity, K+-translocating ATPase complex of Escherichia coli. The affinity of the partially purified ATPase from B. acidocaldarius for its substrates K+ (Km 2-3 microM) and ATP (Km 80 microM), its stimulation by various divalent cations, and its inhibition by vanadate (Ki 1-2 microM), bafilomycin A1 (Ki 20 microM), DCCD (Ki 200 microM) or Ca2+ were also similar to those of the E. coli enzyme, indicating that the two K+-translocating ATPases have almost identical properties.  相似文献   

7.
An ATPase complex sensitive to the energy transfer inhibitors oligomycin, dicyclohexylcarbodiimide and venturicidin has been solubilized from Rhodospirillum rubrum chromatophores with Triton X-100 and further purified by centrifugation on a glycerol gradient. The partially purified RrFo . F1 contains 13 distinct polypeptide subunits, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, including the subunits of the oligomycin-sensitive, water-soluble RrF1 ATPase. The ATPase activity of RrF0 . F1 as that of the membrane-bound enzyme complex depends on Ca2+ or Mg2+ and from detailed kinetic studies it is concluded that the divalent cation-ATP complex is the substrate for both ATPase complexes. Free ATP and free Mg2+ act as competitive inhibitors, with Ki values of 1 mM and 7 muM, respectively. The subunit composition of the purified RrFo . F1 and its similarity to the membrane-bound ATPase with respect to cation dependence and sensitivity to energy transfer inhibitors suggests that it contains all the subunits of the R. rubrum coupling factor-ATPase complex.  相似文献   

8.
The K+-translocating KdpFABC complex from Escherichia coli functions as a high affinity potassium uptake system and belongs to the superfamily of P-type ATPases, although it exhibits some unique features. It comprises four subunits, and the sites of ATP hydrolysis and substrate transport are located on two different polypeptides. No structural data are so far available for elucidating the correspondingly unique mechanism of coupling ion transport and catalysis in this P-type ATPase. By use of electron microscopy and single particle analysis of negatively stained, solubilized KdpFABC complexes, we solved the structure of the complex at a resolution of 19 Å, which allowed us to model the arrangement of subunits within the holoenzyme and, thus, to identify the interfaces between subunits. The model showed that the K+-translocating KdpA subunit is in close contact with the transmembrane region of the ATP-hydrolyzing subunit KdpB. The cytosolic C-terminal domain of the KdpC subunit, which is assumed to play a role in cooperative ATP binding together with KdpB, is located in close vicinity to the nucleotide binding domain of KdpB. Overall, the arrangement of subunits agrees with biochemical data and the predictions on subunit interactions.  相似文献   

9.
Mutants of Vibrio parahaemolyticus lacking the H+-translocating ATPase were isolated to evaluate both the role of this enzyme and the possibility of the involvement of other cation-translocating ATPase in the energy transduction in this organism. Dicyclohexylcarbodiimide-sensitive ATPase activity which represents the H+-translocating ATPase was not detected either in the membrane vesicles or in the cytosol of the mutants. Three major subunits, alpha, beta and gamma, of the H+-translocating ATPase were missing in the membranes of the mutants. Although ATP was synthesized in wild type cells when an artificial H+ gradient was imposed, little ATP was synthesized in the mutants. However, we observed a large ATP synthesis driven by the respiration not only in the wild type but also in the mutants. The respiratory-driven ATP synthesis in wild type was inhibited by an H+ conductor, carbonylcyanide m-chlorophenylhydrazone, by about 50%. On the other hand, the ATP synthesis in the mutants was not affected by the H+ conductor. Since this organism possesses a respiratory Na+ pump, Na+-coupled ATP synthesis might take place. In fact, we observed some ATP synthesis driven by an artificially imposed Na+ gradient both in the wild type and the mutant.  相似文献   

10.
The preparation of highly purified F1-ATPase from Micrococcus sp. ATCC 398 by application of DEAE-Sepharose CL-6B chromatography as final step is described. This enzyme consists of five subunits of different molecular weight: alpha (65000), beta (55000),gamma (35000), delta (20000), and epsilon (17000). Disc electrophoresis on 5% polyacrylamide gels removes the epsilon-polypeptide yielding an active ATPase complex with four different subunits: alpha, beta, gamma, delta. Additionally, by variation of the ionic strength delta can (partly) removed allowing the isolation by disc electrophoresis of an active ATPase complex which consists only of three different subunits alpha, beta, and gamma. If the DEAE-Sepharose chromatography is carried out in the absence of diisopropyl phosphofluoridate (auto)proteolysis yields both an active ATPase with the subunits alpha+ (mol. wt 61000), beta, gamma, and delta and an inactive protein complex with the subunits alpha+, beta, gamma, delta, and two additional polypeptides a (mol. wt 38000) and b (mol. wt 23000). The latter two polypeptides are supposedly fragments of alpha+-chains which have become partially cleaved by (auto)proteolysis.  相似文献   

11.
G Kaim  U Matthey    P Dimroth 《The EMBO journal》1998,17(3):688-695
We have recently isolated a mutant (aK220R, aV264E, aI278N) of the Na+-translocating Escherichia coli/Propionigenium modestum ATPase hybrid with a Na+-inhibited growth phenotype on succinate. ATP hydrolysis by the reconstituted mutant ATPase was inhibited by external (N side) NaCl but not by internal (P side) NaCl. In contrast, LiCl activated the ATPase from the N side and inhibited it from the P side. A similar pattern of activation and inhibition was observed with NaCl and the ATPase from the parent strain PEF42. We conclude from these results that the binding sites for the coupling ions on the c subunits are freely accessible from the N side. Upon occupation of these sites, the ATPase becomes more active, provided that the ions can be further translocated to the P side through a channel of the a subunit. If by mutation of the a subunit this channel becomes impermeable for Na+, N side Na+ ions specifically inhibit the ATPase activity. These conclusions were corroborated by the observation that proton transport into proteoliposomes containing the mutant ATPase was abolished by N side but not by P side Na+ ions. In contrast, LiCl affected proton translocation from either side, similar to the sidedness effect of Na+ ions on H+ transport by the parent hybrid ATPase. If the ATPase carrying the mutated a subunit was incubated with 22NaCl and ATP, 1 mol 22Na+/mol enzyme was occluded. With the parent hybrid ATPase, 22Na+ occlusion was not observed. The occluded 22Na+ could be removed from its tight binding site by 20 mM LiCl, while incubation with 20 mM NaCl was without effect. Li+ but not Na+ is therefore apparently able to pass through the mutated a subunit and make the entrapped Na+ ions accessible again to the aqueous environment. These results suggest an ion translocation mechanism through F0 that in the ATP hydrolysis mode involves binding of the coupling ions from the cytoplasm to the multiple c subunits, ATP-driven rotation to bring a Na+, Li+, or H+-loaded c subunit into a contact site with the a subunit and release of the coupling ions through the a subunit channel to the periplasmic surface of the membrane.  相似文献   

12.
The 30 N-terminal amino acid residues of the purified ATPase c subunit of Propionigenium modestum have been determined. An oligonucleotide mixture was derived from this sequence and used as probe for cloning the corresponding gene in Escherichia coli. The nucleotide sequence of the gene has been determined and compared with those of ATPase c subunits from other bacteria and chloroplasts. Peculiar sequence similarities are found only at the C-terminus between the c subunits of the ATPases from P. modestum and from Vibrio alginolyticus, another putative Na(+)-translocating ATPase.  相似文献   

13.
The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism.  相似文献   

14.
S H Lee  N S Cohen  A J Jacobs  A F Brodie 《Biochemistry》1979,18(11):2232-2239
Membrane vesicles from Mycobacterium phlei contain carrier proteins for proline, glutamine, and glutamic acid. The transport of proline is Na+ dependent and required substrate oxidation. A proline carrier protein was solubilized from the membrane vesicles by treatment with cholate and Triton X-100. Electron microscopic observation of the detergent-treated membrane vesicles showed that they are closed structures. The detergent-extracted proteins were purified by means of sucrose density gradient centrifugation, followed by gel filtration and isoelectric focusing. A single protein with a molecular weight of 20,000 +/- 1000 was found on polyacrylamide gel electrophoresis. Reconstitution of proline transport was demonstrated when the purified protein was incubated with the detergent-extracted membrane vesicles. This reconstituted transport system was specific for proline and required substrate oxidation and Na+. The purified protein was also incorporated into liposomes, and proline uptake was demonstrated when energy was supplied as a membrane potential introduced by K+ diffusion via valinomycin. The uptake of proline was Na+ dependent and was inhibited by uncoupler or by sulfhydryl reagents.  相似文献   

15.
The purified membrane (Na+ + Mg2+)-ATPase of Acholeplasma laidlawii B was reconstituted into vesicles composed of phospholipids containing a photoactivatable aryl nitrene-generating fatty acyl group. The reconstitution with phospholipid resulted in an enhancement of ATPase activity and a reduction in the sensitivity of the enzyme to radiation inactivation. The incorporation of the enzyme into the lipid vesicles results in a broadening of the gel-to-liquid-crystalline phase transition of the photolabeled phospholipid and the appearance of two partially resolved endotherms in the calorimetric traces. The temperatures and the total enthalpy of these overlapping transitions are higher than in the absence of incorporated enzyme. After photolysis of the lipid-reconstituted ATPase and separation of the polypeptide subunits by sodium dodecyl sulfate (SDS) gel electrophoresis, a significant labeling of the alpha-subunit of the enzyme was demonstrated. These results indicate that at least the alpha-subunit of this ATPase must penetrate into or traverse the phospholipid bilayer.  相似文献   

16.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

17.
A new isolate of the aceticlastic methanogen Methanothrix thermophila utilizes only acetate as the sole carbon and energy source for methanogenesis (Y. Kamagata and E. Mikami, Int. J. Syst. Bacteriol. 41:191-196, 1991). ATPase activity in its membrane was found, and ATP hydrolysis activity in the pH range of 5.5 to 8.0 in the presence of Mg2+ was observed. It had maximum activity at around 70 degrees C and was specifically stimulated up to sixfold by 50 mM NaHSO3. The proton ATPase inhibitor N,N'-dicyclohexylcarbodiimide inhibited the membrane ATPase activity, but azide, a potent inhibitor of F0F1 ATPase (H(+)-translocating ATPase of oxidative phosphorylation), did not. Since the enzyme was tightly bound to the membranes and could not be solubilized with dilute buffer containing EDTA, the nonionic detergent nonanoyl-N-methylglucamide (0.5%) was used to solubilize it from the membranes. The purified ATPase complex in the presence of the detergent was also sensitive to N,N'-dicyclohexylcarbodiimide, and other properties were almost the same as those in the membrane-associated form. The purified enzyme revealed at least five kinds of subunits on a sodium dodecyl sulfate-polyacrylamide gel, and their molecular masses were estimated to be 67, 52, 37, 28, and 22 kDa, respectively. The N-terminal amino acid sequences of the 67- and 52-kDa subunits had much higher similarity with those of the 64 (alpha)- and 50 (beta)-kDa subunits of the Methanosarcina barkeri ATPase and were also similar to those of the corresponding subunits of other archaeal ATPases. The alpha beta complex of the M. barkeri ATPase has ATP-hydrolyzing activity, suggesting that a catalytic part of the Methanothrix ATPase contains at least the 67- and 52-kDa subunits.  相似文献   

18.
通过不连续蔗糖密度梯度离心得到的液泡膜微囊 ,先由胆酸钠和 OG分步破膜抽提、经阴离子交换柱 ( Q- Sepharose)层析分离 .纯化后的酶含 V型 H+ - ATPase的主要亚基 ,与大豆磷脂重组 ,获得了有较高泵活性的脂酶体 .脂酶体的质子泵活性受 Valinomycin激活 ,说明它是致电性的 ,受NO-3 ,DCCD以及特异性的 V型 ATPase抑制剂 Bafilomycin的抑制 .脂酶体的泵活性不受 F型和P型 ATPase抑制剂抑制 ,表明质子转运是由 V型 H+ - ATPase引起的 .  相似文献   

19.
The membrane ATPase (EC 3.6.1.3) of Bacillus subtilis can be solubilized by a shock-wash process. Two procedures for purifying the solubilized enzyme are reported. A protease inhibitor, phenylmethane sulfonylfluoride, was introduced in the solubilization and purification step. The resultant ATPase purified by density gradient centrifugation has a molecular weight of 315 000, an s20,w of 13,4 and an amino acid composition very similar to bacterial ATPases already studied. After exposure to polyacrylamide gel electrophoresis in presence of sodium dodecyl sulphate (SDS), or 8 M urea or SDS-urea, the purified ATPase can be dissociated in two non-identical subunits of molecular weights 59 000 (alpha) and 57 000 (beta) with different charges. Kinetic studies showed that Ca2+ or Zn2+ are required for ATPase activity, although Mg2+ was uneffective. At optimal Ca2+ concentration, the Mg2+ has an inhibitory effect. The Km for ATP is 1.3 mM. Inhibitors of the oxydative phosphorylation, of the mitochondrial ATPase and of the (Na+ + K+)-ATPase are studied.  相似文献   

20.
Arginine vasopressin (antidiuretic hormone, ADH) stimulation of sodium transport in high electrical resistance epithelia is accompanied by adenylate cyclase stimulation and cAMP accumulation. The hypothesis of direct phosphorylation of the purified amiloride-blockable epithelial Na+ channel protein by cAMP-dependent protein kinase A after ADH treatment of cultured cells was investigated in this study. Phosphate-depleted A6 cells (a cell line derived from toad kidney) were exposed to 32PO4(3-) in the absence or presence of basolateral ADH (100 milliunits/ml). After 20 min (the time needed for ADH to increase maximally Na+ transport), the Na+ channels were extracted from the cells and purified. At every stage of purification, only one subunit of the Na+ channel, namely, the 315-kDa subunit, was specifically phosphorylated as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography or scintillation counting. In addition, a polyclonal antibody raised against purified epithelial Na+ channel protein was able to immunoprecipitate the phosphorylated channel protein from a detergent-solubilized fraction of vasopressin-treated A6 cells. This same subunit was also specifically phosphorylated in vitro when the purified Na+ channel protein was incubated with gamma-[32P]ATP and the purified catalytic subunit of the cAMP-dependent protein kinase. Thus, only a single component, the 315-kDa subunit, of the Na+ channel protein complex (which is composed of six subunits) can be phosphorylated both in vivo and in vitro. This subunit is selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 2-3 mol of 32P/mol of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号