共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and partial characterization of a flocculin from brewer's yeast. 总被引:4,自引:1,他引:4 下载免费PDF全文
Analysis of a shear supernatant from flocculent, "fimbriated" Saccharomyces cerevisiae brewer's yeast cells revealed the presence of a protein involved in flocculation of the yeast cells and therefore designated a flocculin. The molecular mass of the flocculin was estimated to be over 300 kDa, as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel permeation chromatography of the flocculin yielded an aggregate with an apparent molecular weight of > 2,000. The flocculin was found to be protease sensitive, and the sequence of its 16 N-terminal amino acids revealed at least 69% identity with the predicted N terminus of the putative protein encoded by the flocculation gene FLO1. The flocculin was isolated from flocculent S. cerevisiae cells, whereas only a low amount of flocculin, if any, could be isolated from nonflocculent cells. The flocculin was found to stimulate the flocculation ability of flocculent yeast cells without displaying lectinlike activity (that is, the ability to agglutinate yeast cells). 相似文献
2.
I J Ryrie 《Archives of biochemistry and biophysics》1975,168(2):712-719
The oligomycin-sensitive ATPase protein has been purified in a properly dispersed form from yeast mitochondrial membranes and has been further characterized, particularly with respect to parameters which affect ATPase activity. The protein is to some degree cold labile, the rate of inactivation being accelerated by chaotropic anions. Essentially complete protection against cold inactivation is afforded by methanol, ethanol, and ADP. A partly latent component of the ATPase activity has been discovered which is activated either by heating in the presence of ATP, or to some extent by trypsin. The heat-activated protein is oligomycin-insensitive and much more susceptible to inactivation by cold. N-ethylmaleimide, and trypsin. It is suggested that like the ATPase from spinach chloroplasts and bovine mitochondria, the yeast protein may contain an ATPase inhibitor polypeptide which is dislodged either by heating or by proteolytic enzymes. 相似文献
3.
Purification of a DNA primase activity from the yeast Saccharomyces cerevisiae. Primase can be separated from DNA polymerase I 总被引:6,自引:0,他引:6
A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA primase activity was separated from DNA polymerase activity, although a small amount remained associated with DNA polymerase I. The primase, active as a monomer, has a molecular weight of about 60,000. The primase synthesizes oligoribonucleotides of discrete size, mainly eight or nine nucleotides, in the presence of single-stranded template DNA and ribonucleoside 5'-triphosphates; it utilizes deoxyribonucleoside 5'-triphosphates as substrate with 10-fold lower efficiency. Product size, chromatographic properties, alpha-amanitin resistance, and molecular weight of the primase activity distinguish it from RNA polymerases I, II, and III. The DNA products synthesized by both primase and DNA polymerase I on a single-stranded DNA template were 200-500 nucleotides long and covalently linked to oligoribonucleotides at their 5'-ends. Addition of yeast single-stranded DNA-binding protein (Arendes, J., Kim, K. C., and Sugino, A. (1983) Proc. Natl. Acad. Sci. U.S. A. 80, 673-677) stimulated the DNA synthesis 2-3-fold. 相似文献
4.
The intracellular-periplasmic exo-1,3-beta-glucanase (EC 3.2.1.58) has been extracted from the yeast Kluyveromyces aestuarii and purified to immunoelectrophoretic homogeneity by ion-exchange and gel-exclusion chromatography. The kinetic constants and activation energies for laminarin, p-nitrophenyl-beta-D-glucoside, and pustulan have been determined, along with the effect of pH. Evidence is presented indicating that the enzyme is composed of a single polypeptide chain, about 24% carbohydrates, and its molecular weight was estimated to be 43 000. 相似文献
5.
A DNA primase was isolated from a nuclear fraction from leaves of tobacco (Nicotiana tabacum L. cv. Samsun) and from purified nuclei prepared from tobacco suspension culture cells. The DNA primase was purified to homogeneity
(i) for preparations from leaves, by ammonium sulphate fractionation, followed by chromatography on columns of phosphocellulose,
Q-Sepharose, heparin-Sepharose and single-stranded DNA cellulose, and sedimentation in a glycerol gradient, or (ii) for preparations
from cells, by chromatography on single-stranded DNA cellulose, followed by ammonium sulphate precipitation and chromatography
on columns of High Q, heparin-Sepharose and Mono Q. In glycerol gradients, the DNA primase sedimented at a rate corresponding
to a molecular mass of about 120 kDa. In SDS-polyacrylamide gel electrophoresis, the primase was resolved into two polypeptide
subunits of 63 kDa and 53 kDa, which are similar in size to the primase subunits of animal and yeast DNA polymerase α-primase
complexes. On poly(dT) or phage M13 single-stranded DNA templates, the DNA primase catalysed the synthesis of oligoribonucleotides
up to 20 nucleotides in length, which could serve as primers for DNA synthesis catalysed by Escherichia coli DNA polymerase. Primase activity was dependent on a template, magnesium ions and ATP; it was resistant to aphidicolin and
rifampicin, but was strongly inhibited by N-ethylmaleimide. This is the first report of the purification to homogeneity of
a plant DNA primase.
Received: 8 May 1997 / Accepted: 5 June 1997 相似文献
6.
A simple method was developed for the isolation of primase-free DNA polymerase-alpha from the DNA polymerase-alpha-primase complex of mouse FM3A cells. The polymerase was separated from primase subunits by chromatography on a single-stranded DNA-cellulose column in the presence of 50% etylene glycol. The primase-free DNA polymerase-alpha contained two polypeptides with molecular masses of 180,000 and 68,000. Analysis of the DNA products with poly(dA)-oligo(dT)10 as template-primer revealed that both primase-free DNA polymerase-alpha and the DNA polymerase-alpha-primase complex predominantly synthesized short DNA with less than 30 nucleotides, but that the DNA polymerase-alpha-primase complex also synthesized some longer DNA with more than 300-400 nucleotides. 相似文献
7.
P Plevani M Foiani P Valsasnini G Badaracco E Cheriathundam L M Chang 《The Journal of biological chemistry》1985,260(11):7102-7107
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase. 相似文献
8.
9.
D E Ong 《The Journal of biological chemistry》1984,259(3):1476-1482
A novel retinol-binding protein, resolved during purification into two essentially identical forms, has been discovered in the rat. It was purified to apparent homogeneity, using whole neonatal rat pups as source. The protein is distinct from other known retinol-binding proteins by behavior during purification, spectra of bound retinol, and immunochemical reactivity. It is a single polypeptide chain with molecular weight of about 16,000. The protein binds all-trans-retinol as an endogenous ligand. Retinol bound to the protein exhibited considerably altered absorbance and fluorescence excitation spectra compared to free retinol in organic solvent. The retinol-binding protein was found by radioimmunoassay in a number of tissues of the neonatal rat. However, liver and intestine had levels 100-fold higher than any other tissues examined. The intestine of the adult rat had levels 500-fold higher than any other tissue examined, with a decreasing gradient from jejenum to colon. The high levels in intestine suggest this protein may have a role in the absorption of retinol. 相似文献
10.
DNA polymerase I and DNA primase complex in yeast 总被引:10,自引:0,他引:10
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I. 相似文献
11.
A heat-resistant, low-molecular-weight toxin was isolated from semisolid potato dextrose agar medium after inoculation with Flavobacterium farinofermentans sp. nov., which was isolated from fermented corn meal that caused some outbreaks of food poisoning in China. The toxin was purified by solvent partition, Sephadex LH-20 gel filtration, and C-18 reversed-phase column chromatography. Thin-layer chromatography and high-pressure liquid chromatographic methods were developed for the identification and analysis of the toxin. The purified toxin exhibited a single spot in thin-layer chromatography and a single peak in high-pressure liquid chromatography and had adsorption maxima at 232 and 267 nm. Mass spectral analysis indicated a molecular weight of 169 with an experimental formula of C9H13O3. The 50% lethal dose of purified toxin in mice (oral) was less than 6.84 mg/kg, but greater than 0.68 mg/kg. Postmortem examination showed that the mice died of some type of neurological and cardiovascular system toxicity. The name Flavotoxin A is being assigned to the toxin. 相似文献
12.
Purification and partial characterization of a DNA polymerase alpha species from calf thymus. 总被引:5,自引:4,他引:5 下载免费PDF全文
We have purified a DNA polymerase alpha species from calf thymus to near homogeneity. The enzyme sediments at 5.7 S and contains two polypeptides of 123000 and 134000 daltons in about equimolar ratio. The enzyme is inhibited by aphidicolin and N-ethylmaleimide, and retains its activity in buffers containing moderate salt conditions. Activated DNA is a better substrate than poly-(dA) . (dT) 10. 相似文献
13.
DNA ligases from rat liver. Purification and partial characterization of two molecular forms 总被引:12,自引:0,他引:12
The differential ability of mammalian DNA ligases to use oligo(dT).poly(rA) as a substrate has been used to detect, and thereby extensively purify, two immunologically distinct forms of DNA ligase from rat liver. The activity of DNA ligase I, which is unable to use this template, is uniquely increased during liver regeneration, while that of DNA ligase II remains at a low level. Both enzymes require ATP and Mg2+ for activity and form an adenylylated intermediate which is stable and reactive. After SDS-PAGE, such radiolabeled complexes correspond to polypeptides of 130,000 and 80,000 Da for DNA ligase I and to 100,000 Da for DNA ligase II. That these labeled polypeptides do indeed correspond to active polypeptides of two different forms of DNA ligase is shown by the removal of the radiolabeled AMP, only when the intermediate is incubated with an appropriate substrate. In contrast to other eukaryotic DNA ligases, rat liver DNA ligase II has a lower Km for ATP (1.2 X 10(-5) M) than DNA ligase I (6 X 10(-5) M). Also, DNA ligase II can use ATP alpha S as a cofactor in the ligation reaction much more efficiently than DNA ligase I, further discriminating the ATP binding sites of these enzymes. Finally, antibodies raised against the 130,000-Da polypeptide of DNA ligase I specifically recognize this species in an immunoblot and inhibit only the activity of DNA ligase I. 相似文献
14.
A DNA primase that copurifies with the major DNA polymerase from the yeast Saccharomyces cerevisiae 总被引:9,自引:0,他引:9
Biochemical fractionation of the yeast Saccharomyces cerevisiae has revealed a novel DNA primase activity that copurifies with the major DNA polymerase activity. In the presence of RNA precursors and single-stranded DNA (poly(dT), M13), the DNA primase synthesizes discrete length oligoribonucleotides (apparent length, 8-12 nucleotides) as well as longer RNA chains that appear to be multiples of a modal length of 11-12 nucleotides. When DNA precursors are also present, the oligoribonucleotides are utilized by the accompanying DNA polymerase as primers for DNA synthesis. Copurification of these two enzymatic activities suggests their association in a physical complex which may function in the synthesis of Okazaki fragments at chromosomal replication forks. 相似文献
15.
16.
A tyrosinase has been purified from the skin of the frog Xenopus laevis. Dihydroxyphenylalanine oxidase and tyrosine hydroxylase activities co-purify throughout the procedure. The enzyme is isolated in an inactive form, but both enzymatic activities are activated by a variety of anionic detergents. Of these, sodium dodecyl sulfate (NaDodSO4) is the most effective. The enzyme activation occurs at NaDodSO4 concentrations well below the critical micelle concentration and it remains active at concentrations as high as 30 mM (1%). Neither activity is stimulated by cationic or nonionic detergents, or a variety of other agents, including trypsin. The purified tyrosinase is a glycoprotein having a polypeptide Mr = 175,000 by NaDodSO4-polyacrylamide gel electrophoresis. This monomeric species is enzymatically active in the presence of NaDodSO4. Detergent-activated tyrosinase has a KM for dihydroxyphenylalanine of 6 X 10(-4) M and a KM for tyrosine of 4 X 10(-4) M. Both activities are inhibited by copper chelators but not by an iron chelator. Further characterization of the detergent activation of this enzyme is presented in a companion paper (Wittenberg, C., and Triplett, E. L. (1985) J. Biol. Chem. 260, 12542-12546). 相似文献
17.
18.
A latent collagenase from rheumatoid synovial fluid. Purification and partial characterization 总被引:1,自引:0,他引:1
J Wize 《Biochimica et biophysica acta》1980,615(1):199-207
1. A latent collagenase (EC 3.4.24.3) has been isolated from rheumatoid synovial fluids and purified by (NH4)2SO4 precipitation and column chromatography, utilising Sephadex G-150, DEAE Sephadex A-50 and Sephadex G-100 superfine grade. 2. The final preparation activated by trypsin (EC 3.4.21.4) had a specific activity against thermally reconstituted collagen fibrils of 259 micrograms collagen degraded/min per mg enzyme protein, representing a nearly 800-fold increase over that of the original rheumatoid synovial fluid. 3. The latent collagenase preparation can be activated by trypsin and to some extent by HgCl2 but not by 3 M NaSCN, 3.5 M NaCl, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) or p-chloromercuribenzoate. 4. Inhibition studies and the acrylamide gel electrophoretic pattern of collagen degradation products showed that the trypsin-activated enzyme has the essential features of a neutral collagenase. 5. The molecular weights, determined by calibrated gel filtration, were 52 000 and 43 000 for the latent and the activated enzyme, respectively. 6. The nature of the latency of synovial fluid collagenase is discussed. 相似文献
19.
Cells that depend on oxygen for survival constantly produce reactive oxygen species that attack DNA to produce a variety of lesions, including single-strand breaks with 3'-blocking groups such as 3'-phosphate and 3'-phosphoglycolate. These 3'-blocking ends prevent the activity of DNA polymerase and are generally removed by DNA repair proteins with 3'-diesterase activity. We report here the purification and partial characterization of a 45 kDa protein from Schizosaccharomyces pombe total extract based on the ability of this protein to process bleomycin- or H(2)O(2)-damaged DNA in vitro to allow DNA repair synthesis by DNA polymerase I. Further analysis revealed that the 45 kDa protein removes 3'-phosphate ends created by the Escherichia coli fpg AP lyase following the incision of AP site but is unable to process the 3'-alpha,beta unsaturated aldehyde generated by E. coli endonuclease III. The protein cannot cleave DNA bearing AP sites, suggesting that it is not an AP endonuclease or AP lyase. We conclude that the 45 kDa protein purified from S. pombe is a DNA 3'-phosphatase. 相似文献
20.
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin. 相似文献