首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite restrictive donor criteria and screening procedures, infections resulting from the transfusion of bacterially contaminated platelet products continue to occur. Pathogen reduction technologies targeting nucleic acids have been developed. However, concerns about the safety of these procedures exist; the main concern being the possible mutagenic and carcinogenic effects of the pathogen-inactivated preparation in the recipient. This report reviews the genotoxicity profile of the S-59 (Amotosalen) plus long wavelength ultraviolet light (UVA) pathogen reduction technology, and assesses the mutagenic and carcinogenic hazards in recipients of treated platelets. S-59, a synthetic heterocyclic psoralen, non-covalently intercalates into the nucleic acids of pathogens and forms crosslinks when UVA photoactivated. Before clinical use, the levels of residual S-59 and free photoproducts are greatly reduced using a ‘compound adsorption device’ (CAD). In vitro, S-59 is mutagenic in Salmonella typhimurium and mouse lymphoma L5178Y TK+/− cells, and is clastogenic in CHO cells. There is reduced activity (Salmonella, CHO cells) or no activity (mouse lymphoma cells) with metabolic activation (S9 mix). When tested up to toxic dose levels, S-59 was negative in the mouse bone marrow micronucleus assay and the rat hepatocyte unscheduled DNA synthesis (UDS) test. Based on comparative studies conducted with S-59 plus UVA-treated platelets (up to 25 times without CAD), any genotoxic effects can be attributed to residual S-59. Considering (1) the known genotoxic mechanism of action for S-59, (2) the negative in vivo studies for S-59 at multiples >40,000× over clinical peak plasma levels, and (3) the fact that the positive in vitro genotoxicity effects for the end product seem due to residual S-59, any mutagenic hazard to a recipient of S-59 plus UVA-treated platelets is negligible and there is no concern about a carcinogenic potential as a consequence of a mutagenic activity. This conclusion is supported by a negative p53+/− mouse carcinogenicity study.  相似文献   

2.
The particulate fraction of cigarette smoke, cigarette smoke condensate (CSC), is genotoxic in many short-term in vitro tests and is carcinogenic in rodents. However, no study has evaluated a series of CSCs prepared from a diverse set of cigarettes and produced with different smoking machine regimens in several short-term genotoxicity tests. Here we report on the genotoxicity of 10 CSCs prepared from commercial cigarettes that ranged from ultra-low tar per cigarette (< or =6.5 mg) to full flavor (>14.5 mg) as determined by the Federal Trade Commission (FTC) smoking regimen, a reference cigarette blended to be representative of a U.S. FTC-regimen low-tar cigarette, and experimental cigarettes constructed of single tobacco types. CSCs were tested in the presence of rat liver S9 in the Salmonella plate-incorporation assay using frameshift strains TA98 and YG1041; in micronucleus and comet assays in L5178Y/Tk(+/-) 7.3.2C mouse lymphoma cells, and in CHO-K(1) cells for chromosome aberrations. All 10 CSCs were mutagenic in both strains of Salmonella, and the rank order of their mutagenic potencies was similar. Their mutagenic potencies in Salmonella spanned 7-fold when expressed as rev/mug CSC but 158-fold when expressed as rev/mg nicotine; the range of genotoxic potencies of the CSCs in the other assays was similar regardless of how the data were expressed. All 10 CSCs induced micronuclei with a 3-fold range in their potency. All but one CSC induced DNA damage over a 20-fold range, and all but one CSC induced chromosome aberrations over a 4-fold range. There was no relation among the genotoxic potencies of the CSCs across the assays, and a qualitative advantage of the addition of the other assays to the Salmonella assay was not supported by our findings. Although consideration of nicotine levels may improve the relevance of the quantitative data obtained in the Salmonella and possibly comet assays, compensatory smoking habits and other factors may make the data from the assays used here have qualitative but not quantitative value in assessing risk of cigarette types and cigarette smoking to human health.  相似文献   

3.
Nitrosamine water disinfection byproducts (DBPs) are an emerging class of non-halogenated, nitrogen-containing water contaminants. Five nitrosamine DBPs were analyzed for genotoxicity (N-nitrosodimethylamine (NDMA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), N-nitrosomorpholine (NMOR) and N-nitrosodiphenylamine (NDPhA). Using Salmonella typhimurium strain YG7108 the descending rank order of mutagenicity was NDMA>NPIP>NMOR>NPYR; NDPhA was not mutagenic. We developed and calibrated an exogenous S9 mix that was highly effective in activating NDMA in Chinese hamster ovary (CHO) cells using the SCGE (Comet) assay. The descending rank order for genotoxicity was NDMA>NPIP>NMOR. NDPhA was genotoxic only at one concentration and NPYR was not genotoxic. The genotoxic potencies in S. typhimurium and CHO cells were highly correlated. Based on their comparative genotoxicity attention should be focused on the generation and occurrence of NDMA, NPIP and NMOR. Current drinking water disinfection processes may need to be modified such that the generation of nitrosamine DBPs is effectively limited in order to protect the environment and the public health.  相似文献   

4.
The genotoxicity of N-nitrosodipropylamine, 8 of its oxidized derivatives and N-nitroso-2,6-dimethylmorpholine was examined in the hepatocyte primary culture (HPC)/DNA repair test. Nine N-nitrosamines which are known to be carcinogenic and mutagenic were clearly positive in the HPC/DNA-repair test. N-Nitroso(2,3-dihydroxypropyl) (2-hydroxypropyl)amine did not elicit DNA repair, but showed a borderline mutagenic response in the Salmonella/microsome test. Thus, the HPC/DNA-repair test displays a comparable capacity to the bacterial mutagenesis test for detecting the genotoxic effects of this class of carcinogens.  相似文献   

5.
Ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN) are relatively insensitive explosive compounds that are being explored as safe alternatives to other more sensitive compounds. When used in combination with other high explosives they are an improvement and may provide additional safety during storage and use. The genetic toxicity of these compounds was evaluated to predict the potential adverse human health effects from exposure by using a standard genetic toxicity test battery which included: a gene mutation test in bacteria (Ames), an in vitro Chinese Hamster Ovary (CHO) cell chromosome aberration test and an in vivo mouse micronucleus test. The results of the Ames test showed that EDDN increased the mean number of revertants per plate with strain TA100, without activation, at 5000μg/plate compared to the solvent control, which indicated a positive result. No positive results were observed with the other tester strains with or without activation in Salmonella typhimurium strains TA98, TA1535, TA1537, and Escherichia coli strain WP2 uvrA. DETN was negative for all Salmonella tester strains and E. coli up to 5000μg/plate both with and without metabolic activation. The CHO cell chromosome aberration assay was performed using EDDN and DETN at concentrations up to 5000μg/mL. The results indicate that these compounds did not induce structural chromosomal aberrations at all tested concentrations in CHO cells, with or without metabolic activation. EDDN and DETN, when tested in vivo in the CD-1 mouse at doses up to 2000mg/kg, did not induce any significant increase in the number of micronuclei in bone marrow erythrocytes. These studies demonstrate that EDDN is mutagenic in one strain of Salmonella (TA100) but was negative in other strains, for in vitro induction of chromosomal aberrations in CHO cells, and for micronuclei in the in vivo mouse micronucleus assay. DETN was not genotoxic in all in vitro and in vivo tests. These results show the in vitro and in vivo genotoxicity potential of these chemicals.  相似文献   

6.
Tetrandrine has been used for the treatment of silicosis in China. The potential genotoxic and carcinogenic hazards of this drug were studied using the Salmonella/histidine reversion assay and the SOS/Umu test. The results show that tetrandrine was weakly mutagenic to Salmonella typhimurium TA98 with metabolic activation and did not induce SOS response. However, tetrandrine increased the mutagenic activity of benzo[alpha]pyrene, trinitrofluorenone (TNF), 2-aminoanthracene (2AA), diesel emission particles, airborne particles, and cigarette smoke condensate by more than 100%; the activity of aflatoxin B1 and fried beef was increased by over 75%. It also increased the 2AA and TNF-induced SOS response by more than 300%. These results indicated that tetrandrine was a weak promutagen inducing frameshift mutations and was a potent genotoxic enhancer. The mechanism for the genotoxic enhancement is not known. However, the fact that the increase in mutagenicity was noted only in TA98 and not in TA1538 suggested that the enhancement of genotoxicity by tetrandrine may result from an increase in error-prone DNA repair.  相似文献   

7.
A review of the genotoxicity of ethylbenzene   总被引:2,自引:0,他引:2  
Ethylbenzene is an important industrial chemical that has recently been classified as a possible human carcinogen (IARC class 2B). It induces tumours in rats and mice, but neither the relevance of these tumours to humans nor their mechanism of induction is clear. Considering the carcinogenic potential of ethylbenzene, it is of interest to determine whether there is sufficient data to characterize its mode of action as either genotoxic or non-genotoxic. A review of the currently available genotoxicity data is assessed. Ethylbenzene is not a bacterial mutagen, does not induce gene conversion or mutations in yeast and does not induce sister chromatid exchanges in CHO cells. Ethylbenzene is not clastogenic in CHO or rat liver cell lines but was reported to induce micronuclei in SHE cells in vitro. No evidence for genotoxicity has been seen in humans exposed to relatively high levels of ethylbenzene. Mouse lymphoma gene mutation studies produced a mixed series of responses that have proved difficult to interpret. An increase in morphological transformation of SHE cells was also found. Results from a more relevant series of in vivo genotoxicity studies, including acute and sub-chronic micronucleus tests and the mouse liver UDS assay, indicate a lack of in vivo genotoxic activity. The composite set of results from both in vitro and in vivo tests known to assess direct damage to DNA have been predominantly negative in the absence of excessive toxicity. The available data from the standard battery of genotoxicity assays do not support a genotoxic mechanism for ethylbenzene-induced kidney, liver or lung tumors in rats and mice.  相似文献   

8.
McN-5195, (±)trans-3-(2-bromophenyl)octahydroindolizine, a novel analgesic, was tested for genotoxic potential in a battery of tests with endpoints of mutagenicity, chromosomal alterations and DNA damage/ repair. McN-5195 was not mutagenic when tested in the Ames test using strains TA98, TA100, TA1535, TA1537 and TA 1538, in the absence of metabolic activation and in the presence of Aroclor 1254-induced rat or hamster S-9. Negative results were also obtained in the mouse lymphoma assay in the absence of activation, but reproducible mutagenic responses were seen in this mammalian cell assay in the presence of rat S-9 at high levels of induced toxicity (reduced cell growth). Testing of the enantiomers of McN-5195 in this assay supported these findings. A predominance of small mutant colonies in the mouse lymphoma assay suggested a potential chromosomal effect of McN-5195. This was confirmed with positive findings in an in vitro cytogenetics assay using CHO cells, again at toxic exposure levels and only in the presence of S-9. McN-5195 did not induce DNA repair in the primary rat hepatocyte/DNA repair assay, nor did it induce alterations in vivo of chromosome structure or number when tested in a rat bone marrow cytogenetics assay. The findings from this battery of tests indicate that McN-5195 has modest genotoxic activity when tested in the presence of rat liver S-9 in in vitro systems sensitive to cytogenetic change. The absence of genotoxicity in vitro in Salmonella and intact liver cells and in vivo in rat bone marrow suggests that McN-5195 is unlikely to present a genotoxic risk to whole animals.Abbreviations 2-AA 2-anthramine - 9-AA 9-aminoacridine HCI - 2-AAF 2-acetylaminofluorene - AO acridine orange - CHO Chinese hamster ovary - CP cyclophosphamide - EMS ethylmethane sulfonate - 3H-dThd methyl-3H-thymidine - LDH lactate dehydrogenase - 3-MCA 3-methylcholanthrene - McN-5195 (±)-trans-3-(2-bromophenyl) octahydroindolizine - McN-5195-11 hydrochloride salt of McN-5195 - Na azide sodium azide - RCG relative clonal growth - RSG relative suspension growth - RTG relative total growth - SMF spontaneous mutation frequency - TEM triethylenemelamine - TFT trifluorothymidine  相似文献   

9.
1,3-Dichloro-2-propanol (1,3-DCP-OH, glycerol dichlorohydrin) is of great importance in many industrial processes and has been detected in foodstuffs, in particular in soup spices and instant soups. It has been shown to be carcinogenic, genotoxic and mutagenic. Its genotoxic mechanisms are, however, not yet entirely understood. We have investigated whether alcohol dehydrogenase (ADH) catalysed activation to the highly mutagenic and carcinogenic 1,3-dichloroacetone or formation of epichlorohydrin or other genotoxic compounds play a role for mutagenicity and genotoxicity. In our studies, no indications of ADH catalysed formation of 1,3-dichloropropane could be found, although we could demonstrate a clear activation by ADH in the case of 2-chloropropenol. Formation of allyl chloride could also be excluded. We found, however, clear evidence that epichlorohydrin formed chemically in the buffer and medium used in the test is responsible for genotoxicity. No indication was found that enzymatic formation of epichlorohydrin plays a role. Additional mutagenicity and genotoxicity studies with epichlorohydrin also confirmed the hypothesis that genotoxic effects of 1,3-DCP-OH depend on the chemical formation of epichlorohydrin.  相似文献   

10.
Mutagenicities of quinoline and its derivatives.   总被引:11,自引:0,他引:11  
Quinoline, recently reported to be carcinogenic in rats [12], was mutagenic to Salmonella typhimurium tester strains TA100 and TA98 in the presence of the metabolic activation system S-9 mix. 2-Chloroquinoline, a non-carcinogen [12], was non-mutagenic with or without S-9 mix. 8-Hydroxyquinoline, which is t known to be carcinogenic, was mutagenic with S-9 mix to both bacterial strains. The mutagenicities of 17 other quinoline derivatives that are not known to be carcinogenic were tested, and 12 of these compounds were mutagenic.  相似文献   

11.
The genotoxic effects of gliotoxin, a known fungal secondary metabolite, were studied. Gliotoxin was purified from cultivation medium of Aspergillus fumigatus isolated from the indoor air of a moisture problem house. The genotoxicity of gliotoxin was assessed both in bacterial test systems including bacterial repair assay, Ames Salmonella assay and SOS-chromotest, and in mammalian cells using single cell gel (SCG) electrophoresis assay and sister-chromatid exchange (SCE) test. Gliotoxin was found to be genotoxic in the bacterial repair assay but, not in the Salmonella test or SOS-chromotest. A dose-related increase in DNA damage was observed in mouse RAW264.7 macrophages exposed to gliotoxin for 2h in plain medium in the SCG assay. In contrast to the positive response in the SCG assay, gliotoxin did not induce any clear, dose-related increase in SCEs in Chinese hamster ovary (CHO) cells.  相似文献   

12.
Both positive and negative effects have been found in classical genetic toxicology assays with capsaicin. However, the capsaicin tested in most studies has been derived from pepper plant extracts, which is likely to display varying degrees of purity and possibly diverse impurity profiles. Therefore, the objective of the series of studies reported here was to test the genotoxic potential of pure, synthetic trans-capsaicin (the only naturally occurring geometric isomer of capsaicin), using four genotoxicity assays widely used to evaluate drug substances. These included the Ames, mouse lymphoma cell mutation, mouse in vivo bone marrow micronucleus and chromosomal aberration in human peripheral blood lymphocytes (HPBL) assays. In the Ames assay, pure trans-capsaicin was not mutagenic to Salmonella typhimurium or Escherichia coli when dissolved in dimethylsulfoxide and tested at concentrations extending into the toxic range. trans-Capsaicin was weakly mutagenic in mouse lymphoma L5178Y cells, in the presence of S9 mix, when dissolved in dimethylsulfoxide and tested at concentrations extending into the toxic range. Limited evidence for very weak activity was also obtained in the absence of S9 mix. trans-Capsaicin did not induce micronuclei in bone marrow cells when tested to the maximum tolerated dose of 800 mg/kg per day in male and 200 mg/kg per day in female CD-1 mice using a 0 h plus 24 h oral dosing and 48 h sampling regimen. Finally, trans-capsaicin did not induce structural or numerical chromosomal aberrations when evaluated for its ability to induce clastogenicity in blood lymphocytes. Taken together, these data suggest that the genotoxic potential of pure trans-capsaicin is very low, especially as the clinical significance of weak mutagenicity in the mouse lymphoma assay for catechol-moiety containing compounds is unclear. Moreover, the different genotoxicity profiles of pure trans-capsaicin and purified chili pepper extracts suggest that the purity and source of capsaicin should always be an important consideration for toxicological evaluations.  相似文献   

13.
14.
A review of the mutagenicity and rodent carcinogenicity of ambient air   总被引:1,自引:0,他引:1  
Although ambient air was first shown to be carcinogenic in 1947 and mutagenic in 1975, no overarching review of the subsequent literature has been produced. Recently, Claxton et al. [L.D. Claxton, P.P. Matthews, S.H. Warren, The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity, Mutat. Res./Rev. Mutat. Res. 567 (2004) 347-399] reviewed the literature on the mutagenicity of urban air in the Salmonella mutagenicity assay. Here, we review the literature on the mutagenicity of urban air in other test systems and review the carcinogenicity of urban air in experimental systems. Urban air was carcinogenic in most of the reports involving rodents. Studies ascribed carcinogenic activity primarily to PAHs, nitroarenes, and other aromatic compounds. Atmospheric conditions, along with the levels and types of pollutants, contributed to the variations in carcinogenic and mutagenic activity of air from different metropolitan areas. The majority of the mutagenesis literature was in the Salmonella assay (50%), with plant systems accounting for most of the rest (31%). The present data give little support to the use of plant systems to compare air mutagenicity among multiple sites or studies. Studies in mice have shown that particulate air pollution causes germ-cell mutations. Air sheds contain similar types and classes of mutagens; however, the levels of these compounds vary considerably among air sheds. Combustion emissions were associated with much of the mutagenicity and carcinogenicity of urban air. Most studies focused on the particulate fraction; thus, additional work is needed on the volatile and semi-volatile fractions, metals, and atmospheric transformation. Smaller particles have greater percentages of extractable organic material and are more mutagenic than larger particles. Although hundreds of genotoxic compounds have been identified in ambient air, only a few (<25) are routinely monitored, emphasizing the value of coupling bioassay with chemistry in the monitoring of air for carcinogenic and mutagenic activities and compounds.  相似文献   

15.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

16.
Samples of indoor air were collected from an office room (88 m3) both before smoking and during experimental smoking of 96 cigarettes by 10 persons within 6 h. The particulates were collected on glass-fibre filters and the vapour-phase compounds on XAD-2 resin. The samples were extracted with acetone and analysed quantitatively for polycyclic aromatic compounds and qualitatively with GC-MS. The extracts of filters and XAD-2 resins were fractionated into neutral/acidic and 2 basic (strong and weak bases) fractions; all these fractions were tested with the sister-chromatid exchange (SCE) assay in Chinese hamster ovary (CHO) cells and with the Salmonella/microsome test (strain TA98). Total concentrations of PAC were 205 ng/m3 in the background sample and 1207 ng/m3 after contamination by cigarette smoking. The total PAC concentrations were 4-6 times higher in the vapour phase than in the particulate phase. The fractions of the particulate samples collected before smoking showed mainly marginal genotoxic activity, whereas after smoking their genotoxicity increased dramatically. The fractions of the vapour phase samples were not genotoxic before smoking, but after smoking the neutral/acidic and strong basic fractions induced responses in both assays. The SCE assay was more sensitive towards the vapour-phase mutagens of environmental tobacco smoke (ETS). The relative responses of the two basic fractions, whereas the fraction containing neutral and acidic compounds was the most potent in the SCE assay. In the Salmonella test, the mutagenic activity was mainly detected with metabolic activation, while the induction of SCE in CHO cells was also seen without an exogenous metabolic activation system.  相似文献   

17.
Four sediment samples (Va?ne Airport VA, Va?ne Center VC, Va?ne North VN and Reference North RN) were collected in the Berre lagoon (France). Sediments were analyzed for polycyclic aromatic hydrocarbons (PAHs) by use of pressurized fluid extraction with a mixture of hexane/dichloromethane followed by HPLC with fluorescence detection analysis. Organic pollutants were also extracted with two solvents for subsequent evaluation of their genotoxicity: a hexane/dichloromethane mixture intended to select non-polar compounds such as PAHs, and 2-propanol intended to select polar contaminants. Sediment extracts were assessed by the Salmonella/microsome mutagenicity test with Salmonella typhimurium TA98+S9 mix and YG1041±S9 mix. Extracts were also assessed for their DNA-damaging activity and their clastogenic/aneugenic properties by the comet assay and the micronucleus test with Chinese Hamster ovary (CHO) cells. The PAH concentrations were 611ngg(-1)dw, 1341ngg(-1) dw, 613ngg(-1)dw and 482ngg(-1)dw for VA, VC, VN and RN, respectively. Two genotoxic profiles were observed, depending on the extraction procedure. All the non-polar extracts were mutagenic for TA98+S9 mix, and VA, VC, VN sediment samples exerted a significant DNA-damaging and clastogenic activity in the presence of S9 mix. All the polar extracts appeared mutagenic for TA98+S9 mix and YG104±S9 mix, and VA, VC, VN were genotoxic and clastogenic both with and without S9 mix. These results indicate that the genotoxic and mutagenic activities mainly originated from PAHs in the non-polar extracts, while these activities came from other genotoxic contaminants, such as aromatic amines and nitroarenes, in the polar extracts. This study focused on the important role of uncharacterized polar contaminants such as nitro-PAHs or aromatic amines in the global mutagenicity of sediments. The necessity to use appropriate extraction solvents to accurately evaluate the genotoxic hazard of aquatic sediments is also highlighted.  相似文献   

18.

Concern on the toxicity of final wastewater generated by the petroleum refining industry has increased in recent years due to the potential health threats associated with their release into the waterways. This study determined the mutagenic and genotoxic potential of petroleum refinery wastewater and a receiving river using the Ames fluctuation test on Salmonella typhimurium strains TA100 and TA98, SOS chromotest on Escherichia coli PQ37, and piscine peripheral micronucleus (MN) assay. Analyses of the physicochemical parameters, heavy metal, and organic contents of the samples were also performed. Ames test result showed that the two tested samples were mutagenic with TA100 strain as the more responsive strain for both the refinery wastewater and the river sample in terms of the calculated mutagenic index. A similar result was obtained in the SOS chromotest; however, the E. coli PQ37 system recorded a slightly higher sensitivity for detecting genotoxins than the Salmonella assay in the two samples. MN data showed induction of a concentration-dependent significant (p < 0.05) increase in the frequency of MN by both samples when compared with the negative control. Generally, the refinery wastewater induced the highest mutagenicity and genotoxicity compared to the river sample in the three assays used. Haemoglobin, platelets, red blood cells, mean corpuscular volume, total white blood cells, heterophils, haematocrit, and eosinophils reduced significantly with increased lymphocytes, basophils, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in fishes exposed to both samples. Total petroleum hydrocarbon, benzene, toluene, phenol index, polycyclic aromatic hydrocarbons, cadmium, mercury, nickel, lead, and vanadium contents analysed in the samples were believed to be responsible for the observed genotoxicity and mutagenicity. The findings of this study revealed that petroleum refinery wastewater is a potential mutagenic and genotoxic risk to the environment.

  相似文献   

19.
EPG and an in vitro digest of EPG by pepsin and pancreatin simulating mammalian digestion have been examined for genotoxicity in 4 mutagenicity tests employing different genetic endpoints. In the Salmonella reverse mutation assay, EPG showed only slight mutagenic activity against TA100, a strain responsive to base-pair exchange activity, in the presence of S9 mix. In vitro EPG was mutagenic for CHO-K1-BH4 cells with or without metabolic activation, the activity being greater in the presence of metabolic activation. In the in vitro SCE test, EPG was clastogenic for CHO-K1-BH4 cells independent of metabolic activation. EPG also induced transformation of C3H T10 1/2 mouse fibroblasts in vitro, producing both type II and type III foci. Subjecting an EPG solution to a simulated mammalian digestion process lowers the genotoxic activity of the solution.  相似文献   

20.
N-Acryloyl-N'-phenylpiperazine is a promoter of redox reactions synthesized recently, and proposed as an activator for the polymerization of acrylic resins for biomedical use. The chemical was analyzed for different genotoxicity endpoints, to obtain both information on its possible mutagenic/carcinogenic potential and a model analysis of a tertiary arylamine, which belongs to a class of chemicals commonly used as polymerization accelerators in the biomaterial field. The genotoxicity endpoints considered were: gene mutation in the Salmonella test; structural and numerical chromosome alterations in Chinese hamster V79 cells, evaluated by the micronucleus test together with an immunofluorescent staining specific for kinetochore proteins; in vitro and in vivo DNA damage, evaluated in V79 cells and in mouse liver by the alkaline DNA elution technique. On the whole, the results indicate that N-acryloyl-N'-phenylpiperazine is to be regarded not so much as a DNA-damaging agent, but as a genomic mutagen. Indeed, it was not mutagenic in Salmonella (though its toxicity did not allow testing concentrations over 70 micrograms/plate), and it was weakly positive in inducing chromosomal fragmentation in vitro (one positive, not dose-related, result out of five different doses tested) and in vivo DNA damage (increases in DNA elution rate never doubling control values). The chemical was, however, clearly positive (with dose-dependent effects up to about 25 times the control value) in causing numerical chromosome alterations, at the maximal non-toxic doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号