首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved method for the preparation of adenosine 3′-phosphate 5′-phosphosulfate (PAPS) is described which includes: enzymes from Chlorella for PAPS synthesis; conversion of ATP to AMP after PAPS formation with hexokinase (EC 2.7.1.1) and myokinase (EC 2.7.4.3); and separation of PAPS on DEAE-Sephadex using triethylammonium bicarbonate buffers. Any specific activity can be obtained by using appropriate concentrations of carrier-free 35S and nonradioactive sulfate in the incubations. Between 300 and 2000 μmol of PAPS per batch can be obtained depending on the scale of the preparation. The PAPS is over 95% pure radiochemically and shows only one ultraviolet-absorbing spot on paper electrophoresis at pH 5.8. Adenosine 5′-phosphosulfate (APS) is prepared by incubating PAPS with a 3′-nucleotidase (EC 3.1.3.6) from rye grass. Quantitative conversion of PAPS to APS is obtained, and the APS is purified by column chromatography in the same manner as for PAPS. The APS obtained is better than 95% pure radiochemically and shows only one uv-absorbing spot on paper electrophoresis at pH 5.8.  相似文献   

2.
The translocation of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) across rat liver Golgi-derived vesicles has been studied. Vesicles of the same topographical orientation as in vivo were incubated with a mixture of [adenine-8-3H]PAPS and [35S]PAPS. The tritium to radiolabeled sulfur ratio of the incubation medium was 1.73 +/- 0.03 while that in the vesicles was 1.82 +/- 0.13. This strongly suggests that the entire PAPS molecule was being translocated across the Golgi vesicle membrane even though intact PAPS could not be detected within the vesicles. Translocation of PAPS resulted in accumulation of solutes within vesicles. This accumulation was temperature dependent, saturable (apparent Km = 0.7 microM; Vmax = 25 pmol/mg of protein/10 min), and inhibited by the substrate analogue 3',5'-ADP but not by 2',5'-ADP. Translocation of PAPS was inhibited following treatment of Golgi vesicles with Pronase under conditions in which the activity of a lumenal Golgi membrane marker such as sialyltransferase was not. This result is consistent with the existence of a PAPS carrier protein, portions of which face the cytoplasmic side of the Golgi membrane.  相似文献   

3.
1. An F-insensitive 3′-nucleotidase was purified from spinach leaf tissue; the enzyme hydrolysed 3′-AMP, 3′-CMP and adenosine 3′-phosphate 5′-sulphatophosphate but not adenosine 5′-nucleotides nor PPi. The pH optimum of the enzyme was 7.5; Km (3′-AMP) was approx. 0.8mm and Km (3′-CMP) was approx. 3.3mm. 3′-Nucleotidase activity was not associated with chloroplasts. Purified Mg2+-dependent pyrophosphatase, free from F-insensitive 3′-nucleotidase, catalysed some hydrolysis of 3′-AMP; this activity was F-sensitive. 2. Adenosine 5′-sulphatophosphate kinase activity was demonstrated in crude spinach extracts supplied with 3′-AMP by the synthesis of the sulphate ester of 2-naphthol in the presence of purified phenol sulphotransferase; purified ATP sulphurylase and pyrophosphatase were also added to synthesize adenosine 5′-sulphatophosphate. Adenosine 5′-sulphatophosphate kinase activity was associated with chloroplasts and was released by sonication. 3. Isolated chloroplasts synthesized adenosine 3′-phosphate 5′-sulphatophosphate from sulphate and ATP in the presence of a 3′-nucleotide; the formation of adenosine 5′-sulphatophosphate was negligible. In the absence of a 3′-nucleotide the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate was negligible, but the formation of adenosine 5′-sulphatophosphate was readily detected. Some properties of the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate by isolated chloroplasts are described. 4. Adenosine 3′-phosphate 5′-sulphatophosphate, synthesized by isolated chloroplasts, was characterized by specific enzyme methods, electrophoresis and i.r. spectrophotometry. 5. Isolated chloroplasts catalysed the incorporation of sulphur from sulphate into cystine/cysteine; the incorporation was enhanced by 3′-AMP and l-serine. It was concluded that adenosine 3′-phosphate 5′-sulphatophosphate is an intermediate in the incorporation of sulphur from sulphate into cystine/cysteine.  相似文献   

4.
Choline sulfokinase (3′-phosphoadenosine 5′-phosphosulfate (PAPS):choline sulfotransferase, EC 2.8.2.6) was purified approximately 30-fold from the mycelium of Penicillium chrysogenum. The Km for PAPS is 12 μm. The enzyme is remarkably specific for the adenosine 3′,5′ (or 2′-5′)-diphosphate moiety. 3′,5′-ADP (PAP) has a Ki of 2.5 to 14 μm (depending on the choline concentration) whereas the Ki values of 3′-AMP, 5′-AMP, and 5′-ADP are at least 300-fold higher. The enzyme is also highly specific for choline (Km = 17 μM). Of a number of other amino alcohols tested, none were potent inhibitors and only dimethylaminoethanol served as a reasonably good substrate (Km = 800 μmV = 35% of V with choline). Triethylaminoethanol was a significantly poorer substrate (Km = 2800 μM; V = 2% of V with choline). The purified enzyme is relatively stable when stored frozen in the presence of 25% sucrose. In the absence of sucrose, the maximum activity decreases and the Km for choline increases. (The Km for PAPS remains constant.) The age-inactivated enzyme can be restored to full activity (original V and Km for choline) by a 10-min preincubation with 50 mm mercaptoethanol. However, prolonged incubation (24 h) with 50 mm mercaptoethanol results in irreversible denaturation. Initial velocity studies established that the enzyme follows a sequential kinetic mechanism. Product inhibition studies suggest a rapid equilibrium random binding sequence. Choline-O-phosphate (a dead-end inhibitor) is linearly competitive with choline and a linear mixed type inhibitor with respect to PAPS. Choline analogs lacking the alcohol (or ester) group (e.g., trimethylammonium, neurine, chlorocholine) are competitive dead-end inhibitors with respect to choline but are uncompetitive with respect to PAPS. Thiocholine is a linear mixed type inhibitor with respect to PAPS, but the reciprocal plots are almost parallel. These results suggest that the analogs lacking an oxygen atom have a negligible affinity for the free enzyme and bind predominantly to the enzyme-PAPS complex.  相似文献   

5.
The application of electrical pulses to slices of guinea pig cerebral cortex led to an increase in the levels of adenosine 3′,5′-phosphate (cyclic 3′,5′-AMP) of more than 11-fold within 10 min. This effect of electrical pulses was severely reduced in the presence of theophylline. Cyclic 3′,5′-AMP accumulation in slices was increased in the presence of norepinephrine and histamine about 1·5-fold and six-fold, respectively; the effect of electrical pulses was augmented in the presence of maximal amounts of either amine. For these and other reasons, the accumulation of cyclic 3′,5′-AMP induced by electrical stimulation cannot be ascribed to the release and action of either histamine or norepinephrine.  相似文献   

6.
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates the activity of bio-signaling molecules and aids in metabolizing hydroxyl-containing xenobiotics. The sulfuryl donor for the SULT reaction is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), while products are adenosine 3′,5′-diphosphate (PAP) and a sulfated alcohol. Human phenol sulfotransferase (SULT1A1) is one of the major detoxifying enzymes for phenolic xenobiotics. The mechanism of SULT1A1-catalyzed sulfation of PAP by pNPS was investigated. PAP was sulfated by para-nitrophenyl sulfate (pNPS) in a concentration-dependent manner. 2-Naphthol inhibited sulfation of PAP, competing with pNPS, while phenol activated the sulfation reaction. At saturating PAP, a ping pong kinetic mechanism is observed with pNPS and phenol as substrates, consistent with phenol intercepting the E–PAPS complex prior to dissociation of PAPS. At high concentrations, phenol competes with pNPS, consistent with formation of the E–PAP–phenol dead-end complex. Data are consistent with the previously reported mechanism for sulfation of 2-naphthol by PAPS, and its activation by pNPS [14]. Overall, data are consistent with release of PAP from E–PAP and PAPS from E–PAPS contributing to rate-limitation in both reaction directions.  相似文献   

7.
Alkaline degradation of poly(adenosine diphosphate ribose) is greatly enhanced by Mg2+ ions. Only phosphoribosyl-AMP and 5′-AMP were found as reaction products indicating exclusive and quantitative splitting of the pyrophosphate bonds. The procedure was successfully used to degrade poly(ADP-ribose) in crude cell extracts. Since complete enzymic digestion of poly(ADP-ribose) is difficult to obtain in whole tissue homogenates application of the new chemical procedure represents a significant improvement for the quantitation of the polymer based on the conversion to the specific derivative phosphoribosyl-AMP. It also opens a way for the determination of poly(ADP-ribose) chain length in vivo.  相似文献   

8.
Crude extracts of wild-type Euglena grown in the light (WTL) or in the dark (WTD) and a mutant lacking detectable plastid DNA (W3BUL) contain adenosine 5′-phosphosulfate (APS) sulfotransferase. Isotope dilution experiments indicate that adenosine 3′-phosphate 5′-phosphosulfate (PAPS) sulfotransferase is absent.  相似文献   

9.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

10.
Adenosine 3'-phosphate 5'-phosphosulfate (PAPS), the "active" sulfate donor for sulfated macromolecules, is synthesized in the cytosolic fraction of rat brains. This molecule is then translocated into the lumen of the Golgi apparatus so that it is available to the sulfotransferase enzymes. The protein responsible for the PAPS translocating activity has been solubilized from vesicles enriched in enzyme markers for the Golgi apparatus and reconstituted into liposomes. In reconstituted liposomes translocating activity has a pH optimum of 7.0 and activity was increased 3-fold by divalent cations, although EDTA produced no inhibition. The affinity of the reconstituted translocator for PAPS showed a Km of 1.2 mM with a Vmax of 14 pmol of PAPS translocated/min/mg of protein. Specificity of the translocator activity was tested with a number of nucleotide analogues and only 3',5'-adenosine diphosphate was a competitive inhibitor. Inhibitors of the mitochondrial ADP/ATP transporter and the red cell anion channel blocked transport of PAPS only at very high concentrations.  相似文献   

11.
The levels of cyclic 3′,5′-AMP and trehalose, as well as the specific activity of the trehalase have been investigated in cells of baker's yeast (Saccharomyces cerevisiae) during the lag phase preceding growth. During the first few minutes a substantial increase in the intracellular concentration of cyclic 3′,5′-AMP was observed, followed by a 6–8 fold increase in trehalase activity concomitant with the rapid degradation of trehalose. Cell free extracts prepared from resting yeast were shown to contain a cryptic trehalase, which under physiological conditions could be activated by cyclic 3′,5′-AMP to the same degree as in vivo. These observations suggest that in the lag phase of growth, the level of trehalose in baker's yeast is under control of a system, regulated by the level of cyclic 3′,5′-AMP.  相似文献   

12.
When cell-free preparations of Chlorella pyrenoidosa Chick (Emerson strain 3) form thiosulfate from labeled sulfate, another radioactive compound also appears. This compound has been isolated in quantity and is shown to be identical with adenosine-3′-phosphate-5′-phosphosulfate (PAPS) on the basis of its chromatographic and electrophoretic behavior, chemical composition, sensitivity to selective degradative enzymes, and its ability to serve as a substrate for rat liver aryl sulphotransferase. In addition, as expected for PAPS, the compound on mild acid treatment yields all of its radioactive sulfur as sulfate, and is converted to a compound identical with adenosine-3′,5′-diphosphate (PAP). Replacement of sulfate and ATP by this PAP35S in the usual incubation mixture yields the same product, thiosulfate, which can be isolated as such or detected as acid-volatile radioactivity. This conversion of PAP35S to thiosulfate still requires the addition of Mg2+ and a reductant such as 2,3-dimercaptopropan-1-ol (BAL). The cause of our previous result that high concentrations of ATP inhibit thiosulfate formation from sulfate can be ascribed to a small amount of PAP contaminating the ATP preparations, since PAP proves to be an exceedingly effective inhibitor of the conversion of PAP35S to thiosulfate. Sulfate reduction to thiosulfate by Chlorella extracts is discussed and compared with similar systems from other organisms.  相似文献   

13.
A direct and continuous assay for cyclic 3′,5′-nucleotide phosphodiesterase has been developed. This method is based on the fact that the phosphate group of adenosine 3′,5′-phosphate has one titratable species whereas that of 5′-adenosine monophosphate has two. Hydrolysis of cyclic AMP to 5′-AMP by phosphodiesterase is accompanied by a stoichiometric generation of protons. The rate of addition of an alkaline solution to the reaction mixture to maintain a constant pH with a pH stat is thus stoichiometrically related to the rate of cyclic AMP hydrolysis. A reaction producing 10 mμmoles of H+ or more per minute in 1.5 ml of reaction mixture is accurately measured by this technique. Duplicates are usually within 5% of each other. Results obtained by the titrimetric method correlate well with those obtained by conventional methods. This technique has been successfully used to assay phosphodiesterase of bovine brain in the purified as well as the crude stage.  相似文献   

14.
Abstract— [3H]Pyridoxine and [3H]pyridoxine 5′-phosphate have been injected into rats and mice. The uptake in brain tissue has been studied by comparing the concentrations of labelled compounds in serum, cerebrospinal fluid and brain tissue. Labelled pyridoxine passes rapidly into brain tissue, whereas the uptake of pyridoxine 5′-phosphate occurs at a much slower rate. Perchloric acid extracts of brain have been fractionated by ion-exchange chromatography and the distribution of isotope between the different forms of the vitamin has been determined at different times after the administration. The time sequence of the metabolic transformation is: pyridoxine+→ pyridoxine 5′-phosphate → pyridoxal 5′-phosphate → pyridoxamine 5′-phosphate. After the initial transformation period about 40 per cent of the isotope is recovered in each of the pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate fractions.  相似文献   

15.
Lansdon EB  Fisher AJ  Segel IH 《Biochemistry》2004,43(14):4356-4365
Recombinant human 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase, isoform 1 (brain), was purified to near-homogeneity from an Escherichia coli expression system and kinetically characterized. The native enzyme, a dimer with each 71 kDa subunit containing an adenosine triphosphate (ATP) sulfurylase and an adenosine 5'-phosphosulfate (APS) kinase domain, catalyzes the overall formation of PAPS from ATP and inorganic sulfate. The protein is active as isolated, but activity is enhanced by treatment with dithiothreitol. APS kinase activity displayed the characteristic substrate inhibition by APS (K(I) of 47.9 microM at saturating MgATP). The maximum attainable activity of 0.12 micromol min(-1) (mg of protein)(-1) was observed at an APS concentration ([APS](opt)) of 15 microM. The theoretical K(m) for APS (at saturating MgATP) and the K(m) for MgATP (at [APS](opt)) were 4.2 microM and 0.14 mM, respectively. At likely cellular levels of MgATP (2.5 mM) and sulfate (0.4 mM), the overall endogenous rate of PAPS formation under optimum assay conditions was 0.09 micromol min(-1) (mg of protein)(-1). Upon addition of pure Penicillium chrysogenum APS kinase in excess, the overall rate increased to 0.47 micromol min(-1) (mg of protein)(-1). The kinetic constants of the ATP sulfurylase domain were as follows: V(max,f) = 0.77 micromol min(-1) (mg of protein)(-1), K(mA(MgATP)) = 0.15 mM, K(ia(MgATP)) = 1 mM, K(mB(sulfate)) = 0.16 mM, V(max,r) = 18.7 micromol min(-1) (mg of protein)(-1), K(mQ(APS)) = 4.8 microM, K(iq(APS)) = 18 nM, and K(mP(PPi)) = 34.6 microM. The (a) imbalance between ATP sulfurylase and APS kinase activities, (b) accumulation of APS in solution during the overall reaction, (c) rate acceleration provided by exogenous APS kinase, and (d) availability of both active sites to exogenous APS all argue against APS channeling. Molybdate, selenate, chromate ("chromium VI"), arsenate, tungstate, chlorate, and perchlorate bind to the ATP sulfurylase domain, with the first five serving as alternative substrates that promote the decomposition of ATP to AMP and PP(i). Selenate, chromate, and arsenate produce transient APX intermediates that are sufficiently long-lived to be captured and 3'-phosphorylated by APS kinase. (The putative PAPX products decompose to adenosine 3',5'-diphosphate and the original oxyanion.) Chlorate and perchlorate form dead-end E.MgATP.oxyanion complexes. Phenylalanine, reported to be an inhibitor of brain ATP sulfurylase, was without effect on PAPS synthetase isoform 1.  相似文献   

16.
A photosensitive, radioactive analogue of cyclic adenosine monophosphate, 8-azido-adenosine 3′,5′-[32P]monophosphate (8-N3-cyclic AMP), was used to label the cyclic AMP binding proteins of Dictyostelium discoideum. During development cytosolic proteins appear which are specifically labeled by the photoaffinity agent. The proteins are developmentally regulated since they are only found in starved, developing cells. Unlabeled cyclic AMP competes specifically with the labeled analogue for protein binding sites in contrast to unlabeled 5′-AMP which does not compete. A mutant which develops spores but is deficient in stalk cell production produces a different set of cyclic AMP binding proteins from the parent strain.  相似文献   

17.
Glycogen phosphorylase in cell-free extracts of Neurospora crassa is activated 10- to 15-fold by incubation with MgATP2?. When the MgATP2? is removed, the active form (a form) reverts to the inactive form (b form). The inactivation requires Mg2+ and is inhibited by NaF. The results confirm that Neurospora crassa glycogen phosphorylase exists in two interconvertible forms and strongly suggests that the interconversion is catalyzed by a kinase and phosphatase. The a form was partially purified. The enzyme has a molecular weight of 320,000. Uridine diphosphate glucose is a linear competitive inhibitor with respect to glucose-1-phosphate and a linear non-competitive inhibitor with respect to glycogen. Glucose-6-phosphate is a hyperbolic (partial) noncompetitive inhibitor with respect to all substrates in both directions. The b form of the enzyme in crude cell-free extracts is stimulated 2- to 3-fold by 5′-AMP. As the b form is purified, the 5′-AMP activation is diminished. The molecular weight of the partially purified “b” form was also 320,000.  相似文献   

18.
We discovered that renal injury releases 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) into the interstitium. This finding motivated a novel hypothesis: renal injury leads to activation of an extracellular 2′,3′-cAMP-adenosine pathway (i.e. metabolism of extracellular 2′,3′-cAMP to 3′-AMP and 2′-AMP, which are metabolized to adenosine, a retaliatory metabolite). In isolated rat kidneys, arterial infusions of 2′,3′-cAMP (30 μmol/liter) increased the mean venous secretion of 3′-AMP (3,400-fold), 2′-AMP (26,000-fold), adenosine (53-fold), and inosine (adenosine metabolite, 30-fold). Renal injury with metabolic inhibitors increased the mean secretion of 2′,3′-cAMP (29-fold), 3′-AMP (16-fold), 2′-AMP (10-fold), adenosine (4.2-fold), and inosine (6.1-fold) while slightly increasing 5′-AMP (2.4-fold). Arterial infusions of 2′-AMP and 3′-AMP increased secretion of adenosine and inosine similar to that achieved by 5′-AMP. Renal artery infusions of 2′,3′-cAMP in vivo increased urinary excretion of 2′-AMP, 3′-AMP and adenosine, and infusions of 2′-AMP and 3′-AMP increased urinary excretion of adenosine as efficiently as 5′-AMP. The implications are that 1) in intact organs, 2′-AMP and 3′-AMP are converted to adenosine as efficiently as 5′-AMP (previously considered the most important adenosine precursor) and 2) because 2′,3′-cAMP opens mitochondrial permeability transition pores, a pro-apoptotic/pro-necrotic process, conversion of 2′,3′-cAMP to adenosine by the extracellular 2′,3′-cAMP-adenosine pathway would protect tissues by reducing a pro-death factor (2′,3′-cAMP) while increasing a retaliatory metabolite (adenosine).  相似文献   

19.
The relationship between diuretic hormone (DH) and adenosine 3′:5′-cyclic monophosphate (cyclic AMP) in Rhodnius Malpighian tubules has been investigated. Direct measurement of cyclic AMP levels during stimulation of the tubules by DH supports the view that cyclic AMP is a ‘second messenger’ in this system.Also, the activity of endogenous cyclic AMP phosphodiesterase and its inhibition by theophylline has been investigated briefly. Certain other 3′:5′-cyclic nucleotides have been examined for diuretic activity on Rhodnius Malpighian tubules.  相似文献   

20.
Yu Z  Lemongello D  Segel IH  Fisher AJ 《Biochemistry》2008,47(48):12777-12786
Most assimilatory bacteria, fungi, and plants species reduce sulfate (in the activated form of APS or PAPS) to produce reduced sulfur. In yeast, PAPS reductase reduces PAPS to sulfite and PAP. Despite the difference in substrate specificity and catalytic cofactor, PAPS reductase is homologous to APS reductase in both sequence and structure, and they are suggested to share the same catalytic mechanism. Metazoans do not possess the sulfate reduction pathway, which makes APS/PAPS reductases potential drug targets for human pathogens. Here, we present the 2.05 A resolution crystal structure of the yeast PAPS reductase binary complex with product PAP bound. The N-terminal region mediates dimeric interactions resulting in a unique homodimer assembly not seen in previous APS/PAPS reductase structures. The "pyrophosphate-binding" sequence (47)TTAFGLTG(54) defines the substrate 3'-phosphate binding pocket. In yeast, Gly54 replaces a conserved aspartate found in APS reductases vacating space and charge to accommodate the 3'-phosphate of PAPS, thus regulating substrate specificity. Also, for the first time, the complete C-terminal catalytic motif (244)ECGIH(248) is revealed in the active site. The catalytic residue Cys245 is ideally positioned for an in-line attack on the beta-sulfate of PAPS. In addition, the side chain of His248 is only 4.2 A from the Sgamma of Cys245 and may serve as a catalytic base to deprotonate the active site cysteine. A hydrophobic sequence (252)RFAQFL(257) at the end of the C-terminus may provide anchoring interactions preventing the tail from swinging away from the active site as seen in other APS/PAPS reductases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号