首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Pathogenic Legionella pneumophila evolved as a parasite of aquatic amoebae. To persist in the environment, the microbe must be proficient at both replication and transmission. In laboratory cultures, as nutrients become scarce a stringent response-like pathway coordinates exit from the exponential growth phase with induction of traits correlated with virulence, including motility. A screen for mutants that express the flagellin gene poorly identified five activators of virulence: LetA/LetS, a two-component regulator homologous to GacA/GacS of Pseudomonas and SirA/BarA of Salmonella; the stationary-phase sigma factor RpoS; the flagellar sigma factor FliA; and a new locus, letE. Unlike wild type, post-exponential-phase letA and letS mutants were not motile, cytotoxic, sodium sensitive or proficient at infecting macrophages. L. pneumophila also required fliA to become motile, cytotoxic and to infect macrophages efficiently and letE to express sodium sensitivity and maximal motility and cytotoxicity. When induced to express RelA, all of the strains exited the exponential phase, but only wild type converted to the fully virulent form. In contrast, intracellular replication was independent of letA, letS, letE or fliA. Together, the data indicate that, as the nutrient supply wanes, ppGpp triggers a regulatory cascade mediated by LetA/ LetS, RpoS, FliA and letE that coordinates differentiation of replicating L. pneumophila to a transmissible form.  相似文献   

2.
3.
Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legionnaires' Disease in susceptible hosts. When nutrients become limiting, a stringent-like response coordinates the differentiation of L. pneumophila to a transmissive form, a process mediated by the two-component system LetA/S and the sigma factors RpoS and FliA. Here we demonstrate that the broadly conserved RNA binding protein CsrA is a global repressor of L. pneumophila transmission phenotypes and an essential activator of intracellular replication. By analysing csrA expression and the phenotypes of csrA single and double mutants and a strain that expresses csrA constitutively, we demonstrate that, during replication in broth, CsrA represses every post-exponential phase phenotype examined, including cell shape shortening, motility, pigmentation, stress resistance, sodium sensitivity, cytotoxicity and efficient macrophage infection. At the transition to the post-exponential phase, LetA/S relieves CsrA repression to induce transmission phenotypes by both FliA-dependent and -independent pathways. For L. pneumophila to avoid lysosomal degradation in macrophages, CsrA repression must be relieved by LetA/S before phagocytosis; conversely, before intracellular bacteria can replicate, CsrA repression must be restored. The reciprocal regulation of replication and transmission exemplified by CsrA likely enhances the fitness of microbes faced with fluctuating environments.  相似文献   

4.
5.
Legionella pneumophila possesses a variety of secreted and cell-associated hydrolytic activities that could be involved in pathogenesis. The activities include phospholipase A, lysophospholipase A, glycerophospholipid:cholesterol acyltransferase, lipase, protease, phosphatase, RNase, and p-nitrophenylphosphorylcholine (p-NPPC) hydrolase. Up to now, there have been no data available on the regulation of the enzymes in L. pneumophila and no data at all concerning the regulation of bacterial phospholipases A. Therefore, we used L. pneumophila mutants in the genes coding for the global regulatory proteins RpoS and LetA to investigate the dependency of hydrolytic activities on a global regulatory network proposed to control important virulence traits in L. pneumophila. Our results show that both L. pneumophila rpoS and letA mutants exhibit on the one hand a dramatic reduction of secreted phospholipase A and glycerophospholipid:cholesterol acyltransferase activities, while on the other hand secreted lysophospholipase A and lipase activities were significantly increased during late logarithmic growth phase. The cell-associated phospholipase A, lysophospholipase A, and p-NPPC hydrolase activities, as well as the secreted protease, phosphatase, and p-NPPC hydrolase activities were significantly decreased in both of the mutant strains. Only cell-associated phosphatase activity was slightly increased. In contrast, RNase activity was not affected. The expression of plaC, coding for a secreted acyltransferase, phospholipase A, and lysophospholipase A, was found to be regulated by LetA and RpoS. In conclusion, our results show that RpoS and LetA affect phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of L. pneumophila in a similar way, thereby corroborating the existence of the LetA/RpoS regulation cascade.  相似文献   

6.
During its life cycle, Legionella pneumophila alternates between at least two phenotypes: a resilient, infectious form equipped for transmission and a replicative cell type that grows in amoebae and macrophages. Considering its versatility, we postulated that multiple cues regulate L. pneumophila differentiation. Beginning with a Biolog Phenotype MicroArray screen, we demonstrate that excess short-chain fatty acids (SCFAs) trigger replicative cells to cease growth and activate their panel of transmissive traits. To co-ordinate their response to SCFAs, L. pneumophila utilizes the LetA/LetS two-component system, but not phosphotransacetylase or acetyl kinase, two enzymes that generate high-energy phosphate intermediates. Instead, the stringent response enzyme SpoT appears to monitor fatty acid biosynthesis to govern transmission trait expression, as an altered distribution of acylated acyl carrier proteins correlated with the SpoT-dependent differentiation of cells treated with either excess SCFAs or the fatty acid biosynthesis inhibitors cerulenin and 5-(tetradecyloxy)-2-furoic acid. We postulate that, by exploiting the stringent response pathway to couple cellular differentiation to its metabolic state, L. pneumophila swiftly acclimates to stresses encountered in its host or the environment, thereby enhancing its overall fitness.  相似文献   

7.
8.
Legionella pneumophila is an opportunistic human pathogen that replicates within environmental amoebae including Acanthamoeba castellanii and Dictyostelium discoideum. The Icm/Dot type IV secretion system promotes phagocytosis and intracellular replication of L. pneumophila in an endoplasmic reticulum-derived 'Legionella-containing vacuole' (LCV). L. pneumophila adopts a biphasic life cycle consisting of a replicative growth phase and a transmissive (stationary) phase, the latter of which is characterized by the preferential expression of genes required for motility and virulence. A bioinformatic analysis of the L. pneumophila genome revealed a gene cluster homologous to the Vibrio cholerae cqsAS genes, encoding a putative quorum sensing autoinducer synthase (lqsA) and a sensor kinase (lqsS), which flank a novel response regulator (lqsR). We report here that an L. pneumophila lqsR deletion mutant grew in broth with the same rate as wild-type bacteria, but entered the replicative growth phase earlier. Overexpression of lqsR led to an elongated morphology of the bacteria. The lqsR mutant strain was found to be more salt-resistant and impaired for intracellular growth in A. castellanii, D. discoideum and macrophages, formation of the ER-derived LCV and toxicity. Moreover, L. pneumophila lacking LqsR, as well as strains lacking the stationary sigma factor RpoS or the two-component response regulator LetA, were phagocytosed less efficiently by A. castellanii, D. discoideum or macrophages. The expression of lqsR was dependent on RpoS and, to a lesser extent, also on LetA. DNA microarray experiments revealed that lqsR regulates the expression of genes involved in virulence, motility and cell division, consistent with a role for LqsR in the transition from the replicative to the transmissive (virulent) phase. Our findings indicate that LqsR is a novel pleiotropic regulator involved in RpoS- and LetA-controlled interactions of L. pneumophila with phagocytes.  相似文献   

9.
10.
Quorum-sensing (QS) allows bacterial communication to coordinate the production of extracellular products essential for population fitness at higher cell densities. It has been generally accepted that a significant time duration is required to reach appropriate cell density to activate the relevant quiescent genes encoding these costly but beneficial public goods. Which regulatory genes are involved and how these genes control bacterial communication at the early phases are largely un-explored. By determining time-dependent expression of QS-related genes of the opportunistic pathogen Pseudomonas aerugionsa, we show that the induction of social cooperation could be critically influenced by environmental factors to optimize the density of population. In particular, small regulatory RNAs (RsmY and RsmZ) serving as early responders, can promote the expression of dependent genes (e.g. lasR) to boost the synthesis of intracellular enzymes and coordinate instant cooperative behavior in bacterial cells. These early responders, acting as a rheostat to finely modulate bacterial cooperation, which may be quickly activated under environment threats, but peter off when critical QS dependent genes are fully functional for cooperation. Our findings suggest that RsmY and RsmZ critically control the timing and levels of public goods production, which may have implications in sociomicrobiology and infection control.  相似文献   

11.
12.
13.
14.
In Pseudomonas aeruginosa, the GacS/GacA two-component system positively controls the quorum-sensing machinery and the expression of extracellular products via two small regulatory RNAs, RsmY and RsmZ. An rsmY rsmZ double mutant and a gacA mutant were similarly impaired in the synthesis of the quorum-sensing signal N-butanoyl-homoserine lactone, the disulfide bond-forming enzyme DsbA, and the exoproducts hydrogen cyanide, pyocyanin, elastase, chitinase (ChiC), and chitin-binding protein (CbpD). Both mutants showed increased swarming ability, azurin release, and early biofilm development.  相似文献   

15.
16.
Acute bacterial infections are associated with motility and cytotoxicity via the type III secretion system (T3SS), while chronic infections are linked to biofilm formation and reduced virulence. In Pseudomonas aeruginosa, the transition between motility and sessility involves regulatory networks including the RetS/GacS sensors, as well as the second messenger c-di-GMP. The RetS/GacS signalling cascade converges on small RNAs, RsmY and RsmZ, which control a range of functions via RsmA. A retS mutation induces biofilm formation, and high levels of c-di-GMP produce a similar response. In this study, we connect RetS and c-di-GMP pathways by showing that the retS mutant displays high levels of c-di-GMP. Furthermore, a retS mutation leads to repression of the T3SS, but also upregulates the type VI secretion system (T6SS), which is associated with chronic infections. Strikingly, production of the T3SS and T6SS can be switched by artificially modulating c-di-GMP levels. We show that the diguanylate cyclase WspR is specifically involved in the T3SS/T6SS switch and that RsmY and RsmZ are required for the c-di-GMP-dependent response. These results provide a firm link between the RetS/GacS and the c-di-GMP pathways, which coordinate bacterial lifestyles, as well as secretion systems that determine the infection strategy of P. aeruginosa.  相似文献   

17.
18.
The genetic structure of the 42.84-43.6 F (BamHI-PstI) segment of the F plasmid, which contains all the F DNA sequences necessary for coupling cell division of F+ bacteria with plasmid DNA replication, was analyzed by isolating a series of amber mutants. Two cistrons were found in this region and they were designated letA and letD (an abbreviation for lethal mutation). The letA and letD cistrons were mapped on the 42.84-43.35 F (BamHI- XmaI ) segment and the 43.07-43.6 F (HincII-PstI) segment, respectively, and are presumed to correspond to the first (43.04-43.26 F) and second (43.26-43.57 F) open reading frames, respectively, which were found in this region by nucleotide sequencing. The letD gene product acts to inhibit cell division of the host bacteria and to induce prophages in lysogenic bacteria, whereas the letA gene product acts to suppress the activity of the letD gene product. Taking into consideration the fact that the 42.84-43.6 F segment carries all the F plasmid genes necessary for coupling cell division with plasmid DNA replication, and that the expression of the genes is likely to be controlled by plasmid DNA replication, we constructed the following hypothesis. Before completion of plasmid DNA replication, LetD protein acts to prevent cell division of the host bacteria. When plasmid DNA replication is completed, synthesis of LetA protein (and also LetD protein) takes place and the LetA protein synthesized acts to suppress the activity of LetD protein and make the cell ready for cell division. Actual cell division will take place when replication of both chromosomal and plasmid DNA is completed and the termination protein of the chromosome and the LetA protein of F plasmid are both synthesized. When cell division takes place LetA protein is consumed, and as a result LetD protein becomes active and prevents cell division until the next round of DNA replication is completed.  相似文献   

19.
20.
Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS). This virulence profile is due to a 426 bp deletion in the 3′ end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号