首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified glutamine synthetase from the cyanobacterium Anabaena cylindrica required a divalent cation for activity. Maximum biosynthetic activity required Mg2+ (25 mM when supplied alone). Co2+ and Mn2+ each supported up to 20% of this activity; 12 other cations tested were ineffective. At 2.5 - 10 mM Mg2+, 0.1 mM Co2+ or ethylene glycol-bis-(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) stimulated GS activity to maximum rates; other divalent cations (particularly Mn2+) inhibited Mg2+-dependent activity. At 5 mM Mg2+ the Kappm for NH+4 (0.05 mM) was 20-fold lower than at 25 mM Mg2+; added Co2+ did not markedly alter this low Km for NH+4; this could be physiologically important.  相似文献   

2.
The kinetic properties of glutamine synthetase (EC 6.3.1.2) isolated from pea chloroplasts and purified according to the previously developed procedure have been investigated. The pH optimum for the enzymatic reaction in the presence of Mg2+ and Mn2+ are 7.5-7.6 and 5.5, respectively. The corresponding values of the activation energy per enzyme monomer (Mr = 60 000) are equal to 2900 and 1190 cal/mole. With Mg2+ the values of Km(app.) for NH4+, NH2OH, L-glutamate (+NH4+), L-glutamate (+NH2OH), ATP(+NH4+ and NH2OH) and Mg-ATP (+NH4+ and NH2OH) are 0.64, 17.5, 5.6, 7.0, 1.3 and 0.74 mM, respectively.  相似文献   

3.
The glutamine synthetase from Bacillus cereus IFO 3131 was purified to homogeneity. The enzyme is a dodecamer with a molecular weight of approximately 600,000, and its subunit molecular weight is 50,000. Both Mg2+ and Mn2+ activated the enzyme as to the biosynthesis of L-glutamine, but, unlike in the case of the E. coli enzyme, the Mg2+-dependent activity was stimulated by the addition of Mn2+. The highest activity was obtained when 20 mM Mg2+ and 0.5 mM Mn2+ were added to the assay mixture. For each set of optimal assay conditions, the apparent Km values for glutamate, ammonia and a divalent cation X ATP complex were 1.03, 0.34, and 0.40 mM (Mn2+: ATP = 1: 1); 14.0, 0.47, and 0.91 mM (Mg2+: ATP = 4: 1); and 9.09, 0.45, and 0.77 mM (Mg2+: Mn2+: ATP = 4: 0.2: 1), respectively. At each optimum pH, the Vmax values for these reactions were 6.1 (Mn2+-dependent), 7.4 (Mg2+-dependent), and 12.9 (Mg2+ plus Mn2+-dependent) mumoles per min per mg protein, respectively. Mg2+-dependent glutamine synthetase activity was inhibited by the addition of AMP or glutamine; however, this inhibitory effect was suppressed in the case of the Mg2+ plus Mn2+-dependent reaction. These results suggest that the activity of the B. cereus glutamine synthetase is regulated by both the intracellular concentration and the ratio of Mn2+/Mg2+ in vivo. Also in the present investigation, a potent glutamine synthetase inhibitor(s) was detected in crude extracts from B. cereus.  相似文献   

4.
Enzymatic activity which catalyzes the synthesis of 4-methyleneglutamine from 4-methyleneglutamic acid + ammonia was detected in and partially purified from cotyledons of peanut seeds germinated 5 to 7 days. This activity was separated from glutamine and asparagine synthetases by ammonium sulfate precipitation and DEAE-cellulose chromatography. The enzyme is distinct from these other amide synthetases in its substrate specificity, lack of amide/hydroxylamine exchange, and use of ammonium ion as amide donor together with formation of AMP from ATP. The activity is quite labile in solution, but is retained as a precipitate in ammonium sulfate or when frozen in 12.5% glycerol at -77 degrees C. This activity might be responsible for catalyzing the rapid synthesis of 4-methyleneglutamine which occurs in germinating peanuts.  相似文献   

5.
Glutamine synthetase activity, extracted from an acetone powder of 7-day germinated peanuts (Arachis hypogaea L.), was precipitated by ammonium sulfate (40-60% saturation) and further purified by gel filtration and calcium phosphate gel treatment. When it was adsorbed to and subsequently eluted from a column of diethylaminoethyl-cellulose, two peaks of activity (designated glutamine synthetase 1 and 2) were obtained which were enriched 150- and 20-fold, respectively, over the initial extract. Glutamine synthetase 1 was present in ungerminated seeds and in the cotyledons during germination; glutamine synthetase 2 appeared during germination and was found largely in the developing plant. Compared with glutamine synthetase 2, glutamine synthetase 1 appeared to have a slightly smaller molecular weight and was more stable to heat and storage. The catalytic properties of the two forms were essentially the same. Whereas neither form catalyzed gamma-glutamyltransferase activity with 4-methyleneglutamine, both glutamine synthetases 1 and 2 catalyzed an ATP- and NH(4) (+)-dependent conversion of [(14)C]-4-methyleneglutamic acid to [(14)C]-4-methyleneglutamine, but the K(m) value for 4-methyleneglutamic acid was 10-fold greater and the V(max) only one-fourth that measured with l-glutamic acid. This is the first report of glutamine synthetase activity with 4-methyleneglutamic acid as substrate, although the level of this activity does not appear adequate to account for the rapid synthesis of 4-methyleneglutamine observed in germinating peanuts.  相似文献   

6.
Ammonia assimilation for urea synthesis by liver mitochondria in marine elasmobranchs involves, initially, formation of glutamine which is subsequently utilized for mitochondrial carbamoyl phosphate synthesis [P. M. Anderson and C. A. Casey (1984) J. Biol. Chem. 259, 456-462]. The purpose of this study was to determine if the glutamine synthetase catalyzing this first step in urea synthesis has properties uniquely related to this function. Glutamine synthetase has been highly purified from isolated liver mitochondria of Squalus acanthias, a representative elasmobranch. The purified enzyme has a molecular weight of approximately 400,000 in the presence of Mg2+, MgATP, and L-glutamate, but dissociates reversibly to a species with a molecular weight of approximately 200,000 in the absence of MgATP and L-glutamate. Association with the glutamine- and acetylglutamate-dependent carbamoyl phosphate synthetase, also located in the mitochondria, could not be demonstrated. The subunit molecular weight is approximately 46,000. The pH optimum of the biosynthesis reaction is 7.1-7.4. The purified enzyme is stabilized by MgATP and glutamate and by ethylene glycol, and is activated by 5-10% ethylene glycol. The apparent Km values for MgATP, L-glutamate, and ammonia (NH4+-NH3) are 0.7, 11.0, and 0.015 mM, respectively. Mg2+ in excess of that required to complex ATP as MgATP is required for maximal activity; Mn2+ cannot replace Mg2+. The enzyme is activated by low concentrations of chloride, bromide, or iodide; this effect appears to be related to decreases in the apparent Km for glutamate. The enzyme is inhibited by physiological concentrations of urea, but is not significantly affected by physiological concentrations of trimethylamine-N-oxide. Except for activation by halogen anions and the very low apparent Km for ammonia, this elasmobranch glutamine synthetase has properties similar to those reported for mammalian and avian glutamine synthetases. The very low apparent Km for ammonia may be specifically related to the unique role of this glutamine synthetase in mitochondrial assimilation of ammonia for urea synthesis.  相似文献   

7.
We have investigated the regulation of the activity and synthesis of the glutamine synthetase (l-glutamate:ammonia ligase (ADP-forming), EC (6.3.1.2) of Azotobacter vinelandii. Synthesis of the enzyme was not repressed by NH+4 and/or a number of amino acids in the growth medium; however, biosynthetic activity was rapidly lost through adenylylation in response to ammonium ion. The enzyme could be prepared as a 'relaxed, divalent-cation-free form which was catalytically inactive. The 'taut', active form could be restored with 1-5 mM Mg2+, Mn2+, Ca2+ or CO2+ and taut-vs.-relaxed difference spectra unique to each divalent cation were generated. Mg2+ and CO2+ each supported biosynthetic catalysis, but with different substrate Km and Vmax values. L-Alanine, glycine and L-aspartate were the most potent of several inhibitors of the biosynthetic and the gamma-glutamyl transferase activities; only aspartate and AMP behaved differentially toward glutamine synthetase adenylylation state: the more highly adenylylated enzyme was more severely affected. Any two of alanine, glycine or AMP showed cumulative inhibition, while the inhibitory effects of groups of three effectors were not cumulative. The Co2+-supported biosynthetic activity of Al vinelandii glutamine synthetase was markedly less sensitive to inhibition my glycine and alanine and was stimulated up to 50% by 1-10 mM aspartate.  相似文献   

8.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH+4 is in equiblibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in gamma-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of gamma-glutamyl transferase activities without and with addition of 60 mM Mg2+. Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH+4, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH+4 produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

9.
The characteristics of soluble and membrane-bound glutamine synthetase (GS) from Rhodospirillum rubrum were compared with those of the enzyme located in situ (measured in detergent-treated cells). The results suggest that in vivo GS may be associated with, or bound to, the chromatophore membranes. GS was found to reversibly associate and dissociate from purified chromatophores as a function of the ionic strength of the buffer or the Mg2+ concentration. Solubilized GS was purified to homogeneity and found to be similar to the GS of enteric bacteria in that its molecular weight was about 600,000 and it had one type of subunit of 51,000 molecular weight. Removal of GS from the membrane had no effect on the Km values for the substrates of the biosynthetic reaction, but it did have a substantial effect on both its Mg2+ requirement (the Km increased 10-fold) and the sensitivity of the gamma-glutamyl transferase reaction to the inhibitor methionine sulfoximine (the I0.5 decreased from 1,500 to 60 microM). Both observations suggest that the active site of GS is influenced by its association with the membrane. GS activity was shown to respond to NH4+, phosphodiesterase, Mg2+, and adenylylation cofactors in a manner identical to that of the GS of the coliform bacteria, suggesting that the former may also respond to adenylylation and deadenylylation. Finally, R. rubrum GS was also inhibited by NH4+ by a newly observed, as yet undefined, system.  相似文献   

10.
A PPi-dependent phosphofructotransferase (PPi-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.90) which catalyzes the conversion of fructose 6 phosphate (F-6-P) to fructose 1,6-bisphosphate (F-1, 6-P2) was isolated from a cytoplasmic fraction of Acholeplasma laidlawii B-PG9 and partially purified (430-fold). PPi was required as the phosphate donor. ATP, dATP, CTP, dCTP, GTP, dGTP, UTP, dUTP, ITP, TTP, ADP, or Pi could not substitute for PPi. The PPi-dependent reaction (2.0 mM PPi) was not altered in the presence of any of these nucleotides (2.0 mM) or in the presence of smaller (less than or equal to 300 microM) amounts of fructose 2,6-bisphosphate, (NH4)2SO4, AMP, citrate, GDP, or phosphoenolpyruvate. Mg2+ and a pH of 7.4 were required for maximum activity. The partially purified enzyme in sucrose density gradient experiments had an approximate molecular weight of 74,000 and a sedimentation coefficient of 6.7. A second form of the enzyme (molecular weight, 37,000) was detected, although in relatively smaller amounts, by using Blue Sepharose matrix when performing electrophoresis experiments. The back reaction, F-1, 6-P2 to F-6-P, required Pi; arsenate could substitute for Pi, but not PPi or any other nucleotide tested. The computer-derived kinetic constants (+/- standard deviation) for the reaction in the PPi-driven direction of F-1, 6-P2 were as follows: v, 38.9 +/- 0.48 mM min-1; Ka(PPi), 0.11 +/- 0.04 mM; Kb(F-6-P), 0.65 +/- 0.15 mM; and Kia(PPi), 0.39 +/- 0.11 mM. A. laidlawii B-PG9 required PPi not only for the PPi-phosphofructotransferase reaction which we describe but also for purine nucleoside kinase activity. a dependency unknown in any other organism. In A. laidlawii B-PG9, the PPi requirement may be met by reactions in this organism already known to synthesize PPi (e.g., dUTPase and purine nucleobase phosphoribosyltransferases). In almost all other cells, the conversion of F-6-P to F-1,6-P2 is ATP dependent, and the reaction is generally considered to be the rate-limiting step of glycolysis. The ability of A. laidlawii B-PG9 and one other acholeplasma to use PPi instead of ATP as an energy source may offer these cytochrome-deficient organisms some metabolic advantage and may represent a conserved metabolic remnant of an earlier evolutionary process.  相似文献   

11.
Alkylation of guanosine 5'-monophosphate (GMP) synthetase with the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid (chloroketon) and 6-diazo-5-oxonorleucine (DON) inactivated glutamine- and NH3-dependent GMP synthetase. Inactivation exhibited second order kinetics. Complete inactivation was accompanied by covalent attachment of 0.4 to 0.5 equivalent of chloroketon/subunit. Alkylation of GMP synthetase with iodacetamide selectively inactivated glutamine-dependent activity. The NH3-dependent activity was relatively unaffected. Approximately 1 equivalent of carboxamidomethyl group was incorporated per subunit. Carboxymethylcysteine was the only modified amino acid hydrolysis. Prior treatment with chloroketone decreased the capacity for alkylation by iodacetamide, suggesting that both reagents alkylate the same residue. GMP synthetase exhibits glutaminase activity when ATP is replaced by adenosine plus PPi. Iodoacetamide inactivates glutaminase concomitant with glutamine-dependent GMP synthetase. Analysis of pH versus velocity and Km data indicates that the amide of glutamine remains enzyme bound and does not mix with exogenous NH3 in the synthesis of GMP.  相似文献   

12.
Purification and characterization of RNase P from Clostridium sporogenes   总被引:1,自引:0,他引:1  
RNase P is a multi-subunit enzyme responsible for the accurate processing of the 5' terminus of all tRNAs. The RNA subunit from Clostridium sporogenes has been partially purified and characterized. The RNA is approximately 400 nucleotides long and makes a precise endonucleolytic cleavage at the mature 5' terminus of tRNA. The RNA requires moderate concentrations of Mg2+ (20 mM) and relatively high concentrations of NH4Cl (800 mM) for optimal activity. Mn2+ effectively substitutes for Mg2+ at 2 mM. Zn2+, Ni2+, Ca2+, and Co2+ are ineffective at stimulating activity. Monovalent ions are, in general, more effective the greater the ionic radius (NH+4 greater than Cs greater than Rb greater than K greater than Na). In contrast to the activity of Bacillus subtilis, C. sporogenes RNase P RNA is significant more active in (NH4)2SO4 than in NH4Cl.  相似文献   

13.
Cultures of Clostridium KDHS2 reduced 15NO3- to 15NH4+ with a concurrent increase in molar growth yield of 15.7% compared with fermentatively grown bacteria. The bacteria exhibited a Ks (NO3-) of 0.5 mM and reduced NO3- maximally at a rate of 0.1 mumol h(-1) mg dry wt)-1. A partially purified nitrate reductase was obtained which had a Km (NO3-) of 0.15 mM. The reduction of 13NO3- to 13NH4+ by resting bacteria was not inhibited by NH4+, glutamate, glutamine, methionine sulphoximine or azaserine. Glutamine synthetase affected neither the synthesis nor the activity of the NO3(-)-reducing enzymes. The results are consistent with the hypothesis that NO3- reduction to NH4+ in this Clostridium sp. is dissimilative. SO32-, but not SO42-, inhibited the reaction, apparently at the level of NO2- reduction.  相似文献   

14.
Selenomonas ruminantium was found to possess two pathways for NH4+ assimilation that resulted in net glutamate synthesis. One pathway fixed NH4+ through the action of an NADPH-linked glutamate dehydrogenase (GDH). Maximal GDH activity required KCl (about 0.48 M), but a variety of monovalent salts could replace KCl. Complete substrate saturation of the enzyme by NH4+ did not occur, and apparent Km values of 6.7 and 23 mM were estimated. Also, an NADH-linked GDH activity was observed but was not stimulated by KCl. Cells grown in media containing non-growth-rate-limiting concentrations of NH4+ had the highest levels of GDH activity. The second pathway fixed NH4+ into the amide of glutamine by an ATP-dependent glutamine synthetase (GS). The GS did not display gamma-glutamyl transferase activity, and no evidence for an adenylylation/deadenylylation control mechanism was detected. GS activity was highest in cells grown under nitrogen limitation. Net glutamate synthesis from glutamine was effected by glutamate synthase activity (GOGAT). The GOGAT activity was reductant dependent, and maximal activity occurred with dithionite-reduced methyl viologen as the source of electrons, although NADPH or NADH could partially replace this artificial donor system. Flavin adenine dinucleotide, flavin mononucleotide, or ferredoxin could not replace methyl viologen. GOGAT activity was maximal in cells grown with NH4+ as sole nitrogen source and decreased in media containing Casamino Acids.  相似文献   

15.
The unadenylylated, manganese form of glutamine synthetase (L-glutamate: ammonia ligase (ADP forming), EC 6.3.1.2 from Escherichia coli catalyzes a novel, AMP-dependent (reversible) synthesis of pyrophosphate and L-glutamate from orthophosphate and L-glutamine: Formula (See Text). The hydrolysis of the L-glutamine amide bond is coupled to the stoichiometric synthesis of pyrophosphate, although as PPi accumulates, additional hydrolysis of L-glutamine occurs in a secondary reaction catalyzed by the [manganese x enzyme x AMP x PPi] complex. The synthesis of PPi probably occurs at the subunit catalytic site in the positions normally occupied by the beta, gamma-phosphates of ATP. To promote PPi synthesis, AMP apparently binds to the subunit catalytic site rather than to the allosteric inhibitor site; equilibrium binding results suggest that Pi directs the binding of AMP to the active site. In this reaction, Mg2+ will not substitute for Mn2+, and adenylylated glutamine synthetase is inactive. Pyrophosphate is synthesized by the unadenylylated, manganese enzyme at approximately 2% of the rate of that of ATP in the reverse biosynthetic reaction. If P1 is replaced by arsenate, the enzymatic rate of the AMP-supported hydrolysis of L-glutamine is 100-fold faster than is PPi synthesis and is one-half the rate of the ADP-supported, irreversible arsenolysis of L-glutamine. This latter activity also is supported by GMP and IMP, suggesting that the catalytic site of glutamine synthetase has a rather broad specificity for the nucleotide base. The reactions supported by AMP directly relate to the mechanism of glutamine synthetase catalysis.  相似文献   

16.
Abstract: Changes in the levels of inorganic pyrophosphatases (PPases) were monitored in germinating sesame seeds at regular intervals. Activities of acid and alkaline PPases increased markedly in cotyledons up to day 4, remained at the peak level up to day 7, and then showed a considerable decline thereafter. An alkaline PPase was isolated and purified from 5-day-old sesame cotyledons following acetone precipitation, ammonium sulfate fractionation, and chromatography on DEAE-Sephadex. Current protocol yielded about 20% recovery of total activity with a 6.4-fold purification. The enzyme was a monomer with a molecular mass of 20.8 kDa. Some of the properties of alkaline PPase including stability, substrate specificity, ion requirement, and amino acid composition were studied. Alkaline PPase showed maximum activity at pH 8.6 in the presence of Mg2+ and at 50 degrees C. However, the metal ion could not protect the enzyme against thermal denaturation. Alkaline PPase was highly specific for inorganic pyrophoaphate (PP) as substrate and the Km value was 0.7677 +/- 0.0528 mM. Full activation of the enzyme was achieved with a Mg2+/PPi ratio of 2. Divalent metal ions such as Ca2+, Cu2+, and Zn2+ inhibited PPase activity. Mg2+, partially relieved the inhibition caused by adenosine 5'-triphosphate. Studies related to the localization of alkaline PPase in microbodies revealed that the enzyme was distributed between glyoxysomes and mitochondria, with the former containing more of it.  相似文献   

17.
NH+4 excretion was undetectable in N2-fixing cultures of Rhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH+4 to the medium. The glutamate analog, L-methionine-DL-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH+4. When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH+4. Nitrogenase activities and NH+4 production from fixed N2 were increased considerably when a combined nitrogen source, NH+4 (greater than 40 mumoles NH+4/mg cell protein in 6 days) or L-glutamate (greater than 60 mumoles NH+4/ mg cell protein in 6 days) was added to the cultures together with MSX. Biochemical analysis revealed that R. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH+4 as well as by glutamate. The results demonstrate that utilization of solar energy to photoproduce large quantities of NH+4 from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

18.
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4+ concentrations were investigated during the transition from an NH4+ free medium to one containing NH4+ ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80-100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1-2 hrs the NH4+ remaining in the medium is absorbed too, indicating the induction or activation of a new NH4+ transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4+ level leads to a reversible rise in the glutamine synthetase activity which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4+ level of about 0.6 mM does not change when extracellular NH4+ is taken up and repression of nitrogenase starts.  相似文献   

19.
Carbamyl phosphate synthetase A of Neurospora crassa.   总被引:7,自引:2,他引:5       下载免费PDF全文
Carbamyl phosphate synthetase A of Neurospora crassa was partially purified from mitochondrial extracts. It is an extremely unstable enzyme (t 1/2 = 45 min at 25 detrees C) made up of two unequal subunits. The native enzyme has a molecular weight of approximately 175,000, and the large subunit has a molecular weight of about 125,000. Both the native enzyme and its large subunit are quite asymmetric, as revealed by slow sedimentation in sucrose gradents (7.3S and 6.6S, respectively). The small subunit has not been identified physically as a separate entity. The denaturation of the native, glutamine-dependent activity is correlated with dissociation of subunits, the larger of which retains a more stable, ammonia-dependent activity. Neither substrates nor any other agents except glycerol or polyethylene glycol appreciably stabilized the glutamine-dependent activity. Kinetic studies showed the native enzyme to have a Km for glutamine of about 0.16 mM, and a Km for NH4Cl of about 16 mM, at the optimal pH, 8.0. The enzyme, using either N donor, has a K+ requirement for activity, for which NH4+ can substitute. The glutamine leads to glutamate reaction, which requires the small subunit, also requires the large subunit and all reaction substrates for optimal activity. Other evidences of subunit interaction are the greater activity of the native enzyme, as opposed to the large subunit, with low concentrations of adenosine 5'-triphosphate-Mg2+, and in the stimulation of the ammonia-dependent activity of the native enzyme by glycine. Curiously, although the enzyme's role in biosynthesis is confined to the arginine pathway, it is completely indifferent to arginine or its precursors as feedback effectors or activators. The enzyme is compared with carbamyl phosphate synthetases of other organisms.  相似文献   

20.
Plant holo-(acyl carrier protein) synthase.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. An improved method was developed for the assay of plant holo-(acyl carrier protein) synthase activity, using Escherichia coli acyl-(acyl carrier protein) synthetase as a coupling enzyme. 2. Holo-(acyl carrier protein) synthase was partially purified from spinach (Spinacia oleracea) leaves by a combination of (NH4)2SO4 fractionation and anion-exchange and gel-permeation chromatography. 3. The partially purified enzyme had a pH optimum of 8.2 and Km values of 2 microM, 72 microM and 3 mM for apo-(acyl carrier protein), CoA and Mg2+ respectively. Synthase activity was inhibited in vitro by the reaction product 3',5'-ADP. 4. Results from the fractionation of spinach leaf and developing castor-oil-seed (Ricinus communis) endosperm cells were consistent with a cytosolic localization of holo-(acyl carrier protein) synthase activity in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号