首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Across animal taxa, reproductive success is generally more variable and more strongly dependent upon body condition for males than for females; in such cases, parents able to produce offspring in above‐average condition are predicted to produce sons, whereas parents unable to produce offspring in good condition should produce daughters. We tested this hypothesis in the collared flycatcher (Ficedula albicollis) by cross‐fostering eggs among nests and using the condition of foster young that parents raised to fledging as a functional measure of their ability to produce fit offspring. As predicted, females raising heavier‐than‐average foster fledglings with their social mate initially produced male‐biased primary sex ratios, whereas those raising lighter‐than‐average foster fledglings produced female‐biased primary sex ratios. Females also produced male‐biased clutches when mated to males with large secondary sexual characters (wing patches), and tended to produce male‐biased clutches earlier within breeding seasons relative to females breeding later. However, females did not adjust the sex of individuals within their clutches; sex was distributed randomly with respect to egg size, laying order and paternity. Future research investigating the proximate mechanisms linking ecological contexts and the quality of offspring parents are able to produce with primary sex‐ratio variation could provide fundamental insight into the evolution of context‐dependent sex‐ratio adjustment.  相似文献   

2.
Summary Species of parasitic Hymenoptera that manifest female-biased sex ratios and whose offspring mate only with the offspring of the natal patch are assumed to have evolved biased sex ratios because of Local Mate Competition (LMC). Off-patch matings, i.e. outcrossing, are inconsistent with the conditions favouring biased sex ratios because they foster a mating structure approaching panmixia. Such a mating structure favours parents who invest equally in daughters and sons, assuming the production of each sex is of equal cost.Pachycrepoideus vindemiae (Rondani) is a solitary pupal parasitoid of patchily distributed frugivorousDrosophila, whose offspring manifest a female-biased sex ratio. Thus this species appears to manifest a population structure and progeny sex ratio consistent with LMC. However, preliminary observations and subsequent greenhouse experiments suggest that the males participate in off-patch matings and that this propensity is unlikely to be an experimental artefact. FemaleP. vindemiae dispersed from patches in which either the males were lacking (12% of the emigrant females), both resident (sibling) and immigrant males were present (23% of the females), only immigrant males were present (14% of the females), or their opportunity to mate could not be determined (14% of the females). Of the 12% that emigrated from a patch lacking males, an estimated 7% mated at an oviposition site and 5% remained unmated, presumably because they arrived at an oviposition site that lacked males before they were dissected to determine whether they were inseminated. Thus the degree of bias in the sex ratios of the progeny (18% males), coupled with the suggested outcrossing potential from the experiments (26–37%), is inconsistent with the assumptions of LMC or variants of it, i.e. asynchronous brood maturation. Thus the explanation for a biased sex ratio in the offspring ofP. vindemiae remains a conundrum. More importantly,P. vindemiae does not appear to be an isolated example.  相似文献   

3.
1. Insect parasitoids are expected to evolve behavioural strategies to exploit resources in competitive environments optimally. Indirect competition between parasitoids is particularly common because exploited host patches remain available in the environment for other foraging individuals. 2. The effects of indirect competition on the behaviour of two closely related generalist egg parasitoids were investigated: Trichogramma pintoi Voegelé and Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). Patch residence time, a patch‐leaving mechanism, and progeny sex allocation of females foraging were analysed: (i) alone, (ii) in patches partially parasitised by conspecifics, and (iii) in patches partially parasitised by heterospecifics. 3. Each species responded differently to indirect competition. Trichogramma pintoi females shortened their patch residence times, but they did not adjust their progeny sex ratios. In contrast, T. minutum females did not modify their patch residence times, but they did increase their progeny sex ratios in response to competition. Both Trichogramma species used host rejection, either by antenna rejection or by ovipositor rejection, as a patch‐leaving mechanism. 4. In agreement with a companion study of direct competition using the same model species, the present results indicate that even amongst closely related species, responses to competition can vary considerably.  相似文献   

4.
Some animals, such as Melittobia wasps and surface-living mites, have extremely female-biased sex ratios that cannot be explained by the existing local mate competition (LMC) theories. The restricted production of sons may entail cooperation among mothers, enabling the production of more daughters and avoiding severe competition among sons for insemination access. These unusual examples are characterized by the long-term cohabitation of egg-layers (foundresses) on resource patches and possible contact with oviposited eggs. By applying the logic of mutual policing, we develop a novel game theoretical model for the evolution of cooperation in sex-ratio traits. This is the first attempt to model the evolution of sex ratios based on iterated games. We assumed that foundresses have two abilities to enable mutual policing: they can monitor the sex ratio in the resource patch, and they can punish defectors that produce an overabundance of males. Numerical analysis and evolutionary simulations demonstrate that cooperative low sex ratios can evolve when the number of foundresses per patch is sufficiently small. Our model predicts a slight, but steady increase in oviposition sex ratios with an increase in the number of foundresses, which mimics the phenomenon observed in several animals with extremely female-biased sex ratios. We also discuss the relationship between our model and other models of sex-ratio evolution.  相似文献   

5.
Sex allocation theory has long generated insights into the nature of natural selection. Classical models have elucidated causal phenomena such as local mate competition and inbreeding on the degree of female bias exhibited by various invertebrates. Typically, these models assume mothers facultatively adjust sex allocation using predictive cues of future offspring mating conditions. Here we relax this assumption by developing a sex allocation model for haplodiploid mothers experiencing local mate competition that lay a fixed number of male eggs first. Female egg number is determined by remaining oviposition sites or remaining eggs of the mother, depending on which is exhausted first. Our model includes parameters for variation in foundress number, patch size, fecundity and offspring mortality that allow us to generate secondary sex ratio predictions based on specific parameterizations for natural populations. Simulations show that: 1) in line with classical models, factors that increase sib‐mating result in mothers laying relatively more female eggs; 2) high offspring mortality leads to relatively more males as fertilization insurance; 3) unlike classical model predictions, sub‐optimal predictions, such as more males than females are possible. In addition, our model provides the first quantitative predictions for the expected number of males and females in a patch where typically only one mother utilizes a given patch. We parameterized the model with data obtained from seven species of southern African fig wasps to predict expected means and variances for numbers of male and female offspring for typical numbers of mothers utilizing a patch. These predictions were compared to secondary sex ratio data from single foundress patches, the most commonly encountered situation for these species. Our predictions matched both the observed number and variance of male and female offspring with a high degree of accuracy suggesting that facultative adjustment is not required to produce evolutionary stable sex ratios.  相似文献   

6.
M. R. Strand 《Oecologia》1988,77(2):219-224
Summary The sex allocation behavior of the solitary egg parasitoid Telenomus heliothidis Ashmead was investigated by examining the response of females reared in isolation and under crowded conditions. Females reared in isolation adjusted their sex ratio with foundress and host number per patch in accordance with the predictions of local mate competition (LMC) theory. However, females did not shift their sex ratio in response to conspecifics foraging on the same host patch or to contact with previously parasitized hosts. Instead, shifts were associated with encounter rate and a sequence of oviposition. Females maintained under crowded conditions responded to host patches much differently. One-day-old females which had lived under crowded conditions for 24 h produced sex ratios similar to those of continuously isolated females. However, females reared under crowded conditions for 7 days consistently produced unbiased sex ratios, and exhibited a different sequence of oviposition. This shift appeared to be due directly to crowding rather than age, oviposition experience or sperm depletion since the effect could be reversed by subsequent isolation.  相似文献   

7.
Hymenopteran parasitoids change their sex ratio following different factors. One of these factors is the exploitation of a host patch by several females. The Local Mate Competition (LMC) model ( Hamilton, 1967 ) states that when there are many foundresses on a patch, they should lay a higher sex ratio. The impact of both intra‐ and interspecific competition on sex allocation was measured in two egg parasitoids, Trichogramma minutum Riley and T. pintoi Voegele (Hymenoptera: Trichogrammatidae), by comparing the sex ratio deposited by females exploiting host patches alone and in groups. Results showed that the sex ratio deposited by both species was higher when in groups, as predicted by the LMC model. When the sex ratio produced was compared between females either alone or in interspecific groups, T. minutum females deposited the same sex ratio, while T. pintoi produced more sons when in interspecific groups than when alone. These results are discussed following their natural habitat and their discrimination abilities.  相似文献   

8.
Female hymenoptera are renowned for their ability to adjust offspring sex ratio to local mate competition. When two females share a patch, they frequently produce clutches that differ in size, the female with the larger clutch optimally producing a more female‐biased sex ratio and vice versa. Females can base their sex allocation on their own clutch size only (“self‐knowledge”) or on both females’ clutch sizes (“complete knowledge”). Few studies have genotyped offspring so that each mother's contribution can be considered separately while none has found that both sources of information are used simultaneously. We genotyped 2489 wasps from 28 figs and assigned their maternity to one of the two foundress females. We argue that likelihood is a very convenient method to compare alternative models, while fitness calculations help to appreciate the cost of maladaptation. We find that the pollinating fig wasp Platyscapa awekei simultaneously uses its own as well as the other females clutch size in allocating sex. Indeed, the complete knowledge model explains the data 36 times better than the self‐knowledge model. However, large clutches contained fewer males than the optimal predictions leading to a median selection coefficient of 0.01.  相似文献   

9.
Models concerning the evolution of alternative mating tactics commonly assume that individuals determine their own strategies. Here we develop a computer-based ESS model that allows mothers, ovipositing in discrete patches, to choose both the sex and the male mating tactics (natal-patch mating or dispersing) of their offspring based only on how many other mothers have used the specific patch before them. Data for three species of nonpollinating fig wasps from the Otitesella genus agree quantitatively with the model's assumptions and predictions. This suggests that females respond to population densities at the level of individual figs. The alternative male tactics in the species we studied are probably a result of a conditional strategy exercised by the mother that laid them. In addition, as females were only allowed to lay one egg per patch, our results suggest a new mechanism that can skew population sex ratios towards a female bias.  相似文献   

10.
Species in which the sexes equally exhibit colourful ornaments are an issue for evolutionary theory. Among several hypotheses, sexual selection for mutual mate choice and social selection for signals of behavioural dominance are most commonly supported. We examined the previously documented sex‐similar size of yellow‐orange ear patches in the king penguin, Aptenodytes patagonicus. This species is monogamous and pairs just before reproduction. Raising a chick requires considerable effort by both parents, as they alternate care of their single offspring with foraging at sea. The size of the ear patches appears to signal aggressive territoriality in the breeding colony for both sexes. However, experiments suggest that females prefer large patch size during mate choice, and males do not prefer this trait. We tested whether the size of the coloured ear patch was influenced by sexual selection for couples that had recently paired. We used analyses of covariance to compare the size of the ear patch to a measure of body size and then tested for the difference between males and females. Males were 6.2% larger in ear patch width and 7.7% larger in ear patch area than females, and the distance between the ear patches over the head was 7.5% smaller in males, with all differences highly significant. Consequently, sexual selection appears to favour larger ear patches in males, possibly because of an excess of males that promotes female choice. Social selection also appears to favour the evolutionary maintenance of ear patches of males, and thus both types of selection may contribute to enlarged ear patches.  相似文献   

11.
According to handicap principle, exaggerated ornamental traits are supposed to exert costs on their bearers. However, there is much less theoretical and practical consensus about whether and under which conditions ornament expression should positively correlate with survival. We measured age‐related variation and survival selection on the size of white wing patches and black wing tips in a long‐lived monogamous seabird, the common gull Larus canus. Males had larger white patches than females but patch size showed concave relationship with age irrespective of sex, suggesting that white patch size was prone to senescence in both sexes. Extent of wing tip abrasion correlated negatively with the size of white patch, suggesting, in agreement with the Zahavian handicap hypothesis that only individuals with largest ornaments are able of maintaining them and not paying cost of displaying them. Areas of white wing patches and black wing tips correlated negatively. Irrespective of sex, survival selection favored birds with larger white wing patches and smaller black wing tips, which suggests that white and black wing markings may have coevolved as reverse components of a single ornament. Altogether, our results provide an evidence for the case where survival selection on ornamental traits in females is not weaker than in males. Absence of sex differences with respect to most of observed patterns is consistent with a prediction that among monogamous long‐lived species with biparental care, mutual mate choice leads to evolution of elaborate ornamental traits in both sexes.  相似文献   

12.
Abstract In this study we test theoretical models of female mate choice tactics in natural populations of pine engravers, Ips pini (Say) (Coleoptera: Scolytidae), a species with a resource-based mating system and high search costs. We first develop distinguishing predictions for each of four models of mate choice: random, comparison tactics, and fixed and adjustable thresholds. These predictions relate to commonly collected field data that include the visiting behavior of females and the quality of accepted and rejected mates. Using these types of data, we conclude that pine engravers use an adjustable threshold mate choice tactic because females often accepted the first male encountered, rarely revisited males, visited similar numbers of males in patches of different quality, accepted higher-quality males than those they rejected even on their first encounter with a male in a patch, and had higher acceptance thresholds in high-quality patches than in low-quality patches. This adjustable threshold tactic is consistent with a one-step decision rule and is predicted to occur in species such as pine engravers in which search costs are high and females have information about patch quality before beginning a search in a patch.  相似文献   

13.
Sex ratio theory allows unparalleled opportunities for testing how well animal behavior can be predicted by evolutionary theory. For example, Hamilton's theory of local mate competition (LMC) is well understood and can explain variation in sex allocation across numerous species. This allows more specific predictions to be developed and tested. Here we extend LMC theory to a situation that will be common in a range of species: asymmetrical LMC. Asymmetrical LMC occurs when females lay eggs on a patch asynchronously and male offspring do not disperse, leading to relatively weaker LMC for males emerging from later broods. Varying levels of LMC then lead to varying optimal sex ratios for females, depending on when and where they oviposit. We confirm the assumptions of our theory using the wasp Nasonia vitripennis and then test our predictions. We show that females adjust their offspring sex ratios in the directions predicted, laying different sex ratios on different hosts within a patch. Specifically, there was a less female-biased sex ratio when ovipositing on an unparasitized host if another host on the patch had previously been parasitized and a less female-biased sex ratio on parasitized hosts if females also oviposited on an unparasitized host.  相似文献   

14.
Sex allocation theories provide excellent opportunities to investigate not only the extent to which individuals' behaviour is adaptive, but also how they use relevant information for their decision-making. Here, we investigated whether female parasitoid wasps recognize the sex ratios of other females and adjust their laying sex ratios accordingly. Specifically, we tested the prediction of reciprocal cooperation over sex allocation. Theory predicts more female-biased (cooperative) sex ratios than in the interest of individual benefit, when a restricted number of ovipositing females interact for a long period and their offspring mate within the natal patch. This is because the female-biased sex ratio reduces competition for mates among the male offspring of the females and increases the overall reproductive productivity of the patch. In this case, females would be expected to respond to more even (noncooperative) sex ratios by others and to retaliate by also producing a less female-biased sex ratio to avoid exploitation by defectors. However, contrary to this prediction, our experiment using a sterile male technique showed that female Melittobia australica did not change their offspring sex ratios in response to the sex ratios produced by other females. This suggests that their extremely female-biased sex ratios cannot be explained by reciprocity. A meta-analysis of studies examining sex recognition ability in parasitoid wasps also did not support the predicted pattern of relevant sex ratio adjustment, suggesting that parasitoid females do not possess this ability. Here, we discuss the conditions necessary for the evolution of reciprocity linked to recognition ability.  相似文献   

15.
Parasitoid sex ratios can be greatly influenced by mating and dispersal behaviour. Many sex ratio models assume that mating is strictly local (only mated females disperse from the natal patch) and that a single male is sufficient to inseminate all females in a brood. Bethylids (aculeate parasitoids) have been used to test predictions of these models, but less attention has been paid to testing their underlying assumptions. We investigated the timing of eclosion, mating and dispersal in mixed-sex and single-sex broods of the bethylid wasp Goniozus nephantidis. In mixed-sex broods, almost all females mate before dispersal and a single male is sufficient to inseminate virtually all females, even when brood sizes are large. Males disperse from both mixed-sex and all-male broods, but males in all-male broods disperse more slowly. Virgin females disperse from all-female broods, which are common. Virgin females can produce a brood, mate with their own sons and subsequently produce mixed-sex broods, but their success rate is very low. Virgin females could potentially circumvent sex allocation constraints by superparasitizing mixed-sex broods, but when presented with hosts bearing mixed-sex broods they destroy all members of the initial brood before ovipositing. Because of the high prevalence of single-sex broods and dispersal of both sexes, the mating structure of G. nephantidis is unlikely to conform to the assumption of strict local mating.  相似文献   

16.
We constructed a sex allocation model for parasitic wasps to explain the wide variation in their sex ratio, considering the effects of local mate competition, partial dispersal of progeny before mating, and heterogeneity in host quality among patches. We conducted an experiment to compare with the predictions of our model. We considered the following situations. First, the hosts are distributed in discrete patches: a number of female wasps visit and oviposit in each patch. Second, all the progeny do not mate within the natal patch; some of them disperse to take part in population-wide random mating. We calculated ES sex ratios in cases where there are two kinds of patches: good ones and poor ones. We examined the dependency of ES sex ratios on several parameters, i.e., 1) the probability that a daughter mates in her natal patch, 2) the ratio of the female fitness of the good patch to that of the poor patch, 3) the proportion of poor patches, and 4) the number of foundresses in a patch. The result of our experiment showed the same tendency as the calculation in case where the LMC effect is high in each patch. We briefly discuss a possible selection pressure for dispersal of progeny, with special reference to the mating structure of parasitic wasps.  相似文献   

17.
When a small number of females contribute offspring to a discrete mating group, sex allocation (Local Mate Competition: LMC) theory predicts that females should bias their offspring sex ratio towards daughters, which avoids the fitness costs of their sons competing with each other. Conversely, when a large number of females contribute offspring to a patch, they are expected to invest equally in sons and daughters. Furthermore, sex ratios of species that regularly experience variable foundress numbers are closer to those predicted by LMC theory than species that encounter less variable foundress number scenarios. Due to their patterns of resource use, female Callosobruchus maculatus are likely to experience a broad range of foundress number scenarios. We carried out three experiments to test whether female C. maculatus adjust their sex ratios in response to foundress number and two other indicators of LMC: ovipositing on pre-parasitised patches and ovipositing with sisters. We did not find any evidence of the predicted sex ratio adjustment, but we did find evidence of kin biased behaviour.  相似文献   

18.
陈博  文乐雷  赵菊鹏  梁宏合  陈建  焦晓国 《生态学报》2017,37(11):3932-3938
越来越多的研究发现,雄性产生精子(精液)也需付出代价。雄性除了依据配偶质量和竞争对手的竞争强度适应性调整生殖投入外,雄性在求偶和交配行为上也相应产生适应性反应,求偶和交配行为具有可塑性。目前雄性求偶和交配行为可塑性研究主要集中于雌性多次交配的类群中,在雌性单次交配的类群中研究甚少。以雌蛛一生只交配一次而雄蛛可多次交配的星豹蛛为研究对象,比较:(1)前一雄性拖丝上信息物质对后续雄蛛求偶和交配行为的影响,(2)雌雄不同性比对雄蛛求偶和交配行为的影响。研究结果表明,星豹蛛前一雄蛛拖丝上的信息物质对后续雄蛛求偶潜伏期、求偶持续时间和交配持续时间都没有显著影响,但前一雄蛛拖丝上的信息物质对后续雄蛛求偶强度有显著抑制作用。同时,性比对星豹蛛雄蛛求偶和交配行为都没有显著影响。可见,星豹蛛雄蛛对同种雄性拖丝上的化学信息可产生求偶行为的适应性调整,而对性比不产生适应性反应。  相似文献   

19.
The gregarious parasitoid Cotesia glomerata (L.) is often presumed to possess the characteristic attributes of a species that manifests local mate competition (LMC), as it commonly produces female-biased broods. However, our field surveys of sex ratio and laboratory observations of adult behaviour showed that this species is subject to partial local mate competition caused by natal dispersal. On average, 30% of males left their natal patch before mating, with the proportion of dispersing males increasing with an increase in the patch's sex ratio (i.e. proportion of males). Over 50% of females left their natal patch before mating, and only 27.5% of females mated with males emerging from the same natal patch. Although females showed no preference between males that were and were not their siblings, broods from females that mated with siblings had a significantly higher mean brood sex ratio (0.56) than broods from females that mated with nonsiblings (0.39). Furthermore, brood sex ratios increased as inbreeding was intensified over four generations. A field population of this wasp had a mean brood sex ratio of 0.35 over 3 years, which conformed well to the evolutionarily stable strategy sex ratio (r=0.34) predicted by Taylor's partial sibmating model for haplodiploid species. These results suggest that the sex allocation strategy of C. glomerata is based on both partial local mate competition in males and inbreeding avoidance in females. In turn, this mating system plays a role in the evolution of natal dispersal behaviour in this species.Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

20.
In many dioecious bryophyte species, population sex ratios range from all female to all male. The focal species of the present study, the liverwort Marchantia inflexa, forms patches on rock and bark surfaces, and these differ widely in sex ratio at a rainforest field site in Trinidad. This analysis – to our knowledge the first modeling study of sex-ratio dynamics in a dioecious clonal organism – addresses abundances of male and female M. inflexa through time within an individual patch. We represent the life history of this species using seven different stages (non-reproductive, asexually reproductive, sexually reproductive males, non-reproductive, asexually reproductive, unfertilized and fertilized sexual females) and express their dynamics using ordinary differential equations. Some of the stages become more abundant as thalli extend over the substrate and may overgrow each other to capture space. Our simple representation of dynamics within the patch failed to stabilize the sex ratio: females gradually eliminated males at low to moderate disturbance frequency and males eliminated females at high disturbance frequency. This pattern did not hinge on whether sexual propagules could germinate within the patch, but asexual reproduction (via gemmae dispersed within the patch) played an important role. This suggests that the maintenance of sex in these populations may hinge on metapopulation structure and dynamics. Though sexual reproduction appears to be unimportant within patches, spores provide the primary means of recolonizing patches eliminated by large-scale disturbances. We found that shortly after the patch was fully occupied, the production of these wind-dispersed spores was maximized, but spore production declined thereafter as the sex ratio became increasingly biased toward one sex or the other. Much additional modeling and empirical work is needed to link within-patch dynamics across patches and account for dynamics at the metapopulation level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号