首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new diterpenoids terracinolides J-L (1-3), 13alpha-OH terracinolide F (8), abeodendroidin F (11) and epiabeodendroidin F (12) have been identified from Euphorbia dendroides L. The new compounds and six co-occurring known terracinolides were tested as inhibitors of the drug-efflux activity of P-glycoprotein from cancer cells. The results were used to extend the structure-activity relationships established for this class of compounds highlighting the relevance of substitution at positions 2, 3, 6, and 15 and disclosing a remarkable tolerance toward connectivity changes in the terpenoid core.  相似文献   

2.
Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively.  相似文献   

3.
Starch biosynthesis and degradation was studied in seedlings and mature plants of Euphorbia heterophylla L. and E. myrsinites L. Mature embryos, which lack starch grains in the non-articulated laticifers, develop into seedlings that accumulate starch rapidly when grown either in the light or the dark. Starch accumulation in laticifers of dark-grown seedlings was ca. 47 and 43% of total starch in light-grown controls in E. heterophylla and E. myrsinites, respectively. In light-grown seedlings, starch was present in laticifers as well as parenchyma of stems and leaves, whereas in dark-grown seedlings starch synthesis was almost exclusively limited to laticifers. In 7-month-old plants placed into total darkness, the starch in chyma was depleted within 6 d, whereas starch in laticifers was not mobilized. The starch content of latex in plants during development of floral primordia, flowering, and subsequent fruit formation remained rather constant. The results indicate that laticifers in seedlings divert embryonal storage reserves to synthesize starch even under stress conditions (darkness) in contrast to other cells, and that starch accumulated in laticifers does not serve as a metabolic reserve. The laticifer in Euphorbia functions in the accumulation and storage of secondary metabolites yet retains the capacity to produce, but not utilize starch, a primary metabolite.  相似文献   

4.
Various solutions of labeled precursors were absorbed by the cotyledons of etiolated Euphorbia lathyris L. seedlings. Incorporation of 14C into triterpenes from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]glyoxylate, [U-14C]glycerol, [U-14C]serine, [U-14C]xylose, [U-14C]glucose, and [U-14C]sucrose was obtained. The [14] triterpenes synthesized from [14C] sugars were mainly of latex origin. [14C]mevalonic acid was only involved in terpenoid synthesis outside the laticifers. Exogenously supplied glyoxylate, serine, and glycerol were hardly involved in lipid synthesis at all. The 14C-distribution over the various triterpenols was consistent with the mass distribution of these constituents in gas liquid chromatography when [14C]sugars, [14C]acetate, and [14C]pyruvate were used. These precursors were supplied to the seedlings in the presence of increasing amounts of unlabeled substrates. The amount of substrate directly involved in lipid synthesis as well as the absolute triterpenol yield was calculated from the obtained [14C]triterpenols. The highest yield was obtained in the sucrose incorporated seedlings, being 25% of the daily increase of latex triterpenes in growing seedlings.  相似文献   

5.
A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50 >100 μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors.  相似文献   

6.
Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes.Abbreviations MDR Multidrug resistance  相似文献   

7.
The speciesLotus corniculatus andL. tenuis were transformed with anAgrobacterium rhizogenes binary vector, conferring resistance to the antibiotic hygromycin. Transgenic plants recovered from both species were tested for the ability of leaf-derived calluses to grow in a hygromycin-supplemented medium. Molecular analysis showed the integration of the Ri T-DNA and of the gene for hygromycin resistance, with a high frequency of co-transformation. Progeny analysis of the hygromycin resistance indicated this to be a single Mendelian trait in test plants. The transformed plants will be utilized in somatic hybridization experiments with lucerne for producing non-bloating genotypes with condensed tannins in leaves.  相似文献   

8.
We report functional expression of BCRP in Pichia pastoris in which BCRP was produced as a 62 kDa underglycosylated protein. BCRP expression level in P. pastoris was comparable to that in HEK cells. The basal BCRP ATPase activity in the yeast membranes was approximately 40-80 nmol Pi/min/mg protein, which can be modulated by known BCRP substrates and inhibitors. Photolabeling of BCRP with 8-azido[alpha-32P]ATP was dependent preferentially on the presence of Co2+ than Mg2+ and could be inhibited by a molar excess of ATP. Vanadate-induced trapping of 8-azido[alpha-32P]ADP by BCRP was much more significant in the presence of Co2+ than that with Mg2+. The Km and Vmax values of BCRP for [3H]E1S transport were 3.6+/-0.3 microM and 55.2+/-1.6 pmol/min/mg protein, respectively. This efficient and cost-effective expression system should facilitate large scale production and purification of BCRP for further structural and functional analyses.  相似文献   

9.
The allelopathic effects of neo-clerodane diterpenes, isolated from Teucrium chamaedrys (L.), have been evaluated on the seed germination and seedling growth of four coexisting Mediterranean species (Dactylis hispanica, Petrorhagia velutina, Phleum subulatum and Petrorhagia saxifraga) and two cosmopolitan weeds (Amaranthus retroflexus and Avena fatua). All of the structures have been elucidated on the basis of their spectroscopic features. The bioassays data, analyzed by principal component analysis, showed more negative effects on weeds respect to coexisting species. Moreover D. hispanica, P. velutina, P. subulatum showed both stimulating or inhibiting effects depending on the type of metabolite and the concentration used in the test.  相似文献   

10.
11.
The overexpression of P-glycoprotein plays an important role in the process of multidrug resistance (MDR). P-gp inhibitors are one of the effective strategies to reverse tumor MDR. Novel P-gp inhibitors with phthalazinone scaffolds were designed, synthesized and evaluated. Compound 26 was found to be the most promising for further study. Compound 26 possessed high potency (EC50 = 46.2 ± 3.5 nM) and low cytotoxicity.26 possessed high MDR reversal activity towards doxorubicin-resistant K56/A02 cells. Reversal fold (RF) value reach to 44.26. 26 also increased accumulation of doxorubicin (DOX or ADM) or other MDR-related anticancer drugs with different structures. In conclusion, compound 26 deserves more research for its good features as P-gp inhibitor.  相似文献   

12.
单增李斯特菌是一种重要的人兽共患食源性胞内致病菌,广泛存在于自然环境中且易污染动物性食品,人及动物感染后可引起严重的李斯特菌病,死亡率高达30%。单增李斯特菌通常对多种药物敏感,然而,因不合理使用抗菌药或消毒剂形成的选择压力导致李斯特菌多重耐药情况的报道日渐增多。外排泵蛋白是细菌中一类重要的蛋白,可参与机体多种生物学过程,包括影响细菌对抗生素敏感性、促进有毒化合物泵出、影响细菌毒力等。本文综述了近年来关于单增李斯特菌耐药外排泵的功能及调控机制的研究进展,为深入理解李斯特菌耐药等环境适应机制及有效控制该病原污染传播和筛选抗感染药物新靶点提供理论基础。  相似文献   

13.
We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns encountered in using heterologous systems are totally excluded.  相似文献   

14.
15.
The nuclear ITS region and four noncoding cpDNA regions were directly sequenced to reconstruct the phylogeny of subsect. Meleuphorbia (Euphorbia L.), which is endemic to South Africa. Sequence polymorphism within cpDNA regions was too low to permit phylogenetic analyses. Large deletions including the ctp2-atpB proximal promoter in the atpB-rbcL IGS were found in two individuals. Phylogeny of subsect. Meleuphorbia was reconstructed using nrITS sequence data. The two resulting major clades are consistent with the geographic distribution of the investigated taxa. Plants distributed in the winter rainfall area in the Little Karoo form one clade, plants growing in the Great Karoo with predominant summer rainfall form the other. Subsect. Meleuphorbia is not monophyletic, because members of subsect. Anthacantha are clustered within the meleuphorbias. Both share functional unisexuality, form angled stems and the key character of Anthacantha (inflorescence spines) occurs as a transitional stage in form of persistent peduncles in Meleuphorbia.  相似文献   

16.
In our search for new natural photosynthetic inhibitors that could lead to the development of “green herbicides” less toxic to environment, the diterpene labdane-8α,15-diol (1) and its acetyl derivative (2) were isolated for the first time from Croton ciliatoglanduliferus Ort. They inhibited photophosphorylation, electron transport (basal, phosphorylating and uncoupled) and the partial reactions of both photosystems in spinach thylakoids. Compound 1 inhibits the photosystem II (PS II) partial reaction from water to Na+ Silicomolibdate (SiMo) and has no effect on partial reaction from diphenylcarbazide (DPC) to 2,6-dichlorophenol indophenol (DCPIP), therefore 1 inhibits at the water splitting enzyme and also inhibits PS I partial reaction from reduced phenylmetasulfate (PMS) to methylviologen (MV). Thus, it also inhibits in the span of P700 to Iron sulfur center X (FX). Compound 2 inhibits both, the PS II partial reactions from water to SiMo and from DPC to DCPIP; besides this, it inhibits the photosystem I (PS I) partial reaction from reduced PMS to MV. With these results, we concluded that the targets of the natural product 2 are located at the water splitting enzyme, and at P680 in PS II and at the span of P700 to FX in PS I. The results of compounds 1 and 2 on PS II were corroborated by chlorophyll a fluorescence.  相似文献   

17.
In spite of our expanding knowledge on the molecular biology of cancer, relatively little progress has been made in improving therapy for the solid tumours which are major killers, e.g., lung, colon, breast. Significant advances over the past 10–15 years in chemotherapy of some tumours such as testicular cancer and some leukaemias indicates that, in spite of the undesirable side-effects, chemotherapy has the potential to effect cure in the majority of patients with certain types of cancer. Multidrug resistance, inherent or acquired, is one important limiting factor in extending this success to most solid tumours.In vitro studies described in this review are now uncovering a diversity of possible mechanisms of cross-resistance to different types of drug. Sensitive methods such as immunocytochemistry, RT-PCR orin situ RNA hybridisation may be necessary to identify corresponding changes in clinical material. Only by classifying individual tumours according to their specific resistance mechanisms will it be possible to define the multidrug resistance problem properly. Such rigorous definition is a prerequisite to design (and choice on an individual basis) of specific therapies suited to individual patients. Since a much larger proportion of cancer biopsies should be susceptible to accurate analysis by the immunochemical and molecular biological techniques described above than to direct assessment of drug response, it seems reasonable to hope that this approach will succeed in improving results for cancer chemotherapy of solid tumours where other approaches such as individualisedin vitro chemosensitivity testing have essentially failed. Results from clinical trials using cyclosporin A or verapamil are encouraging, but these agents are far from ideal, and reverse resistance in only a subset of resistant tumours. Proper definition of the other mechanisms of MDR, and how to antagonize them, is an urgent research priority.Abbreviations MDR multiple drug resistance - P-170=pgp P-glycoprotein=product ofmdr-1 gene  相似文献   

18.
《Phytomedicine》2014,21(11):1264-1272
ObjectiveMultidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine.MethodsThe inhibitory effects of tanshinones on P-gp function were compared using digoxin bi-directional transport assay in Caco-2 cells. The potentiation of cytotoxicity of anticancer drugs by effective tanshinones were evaluated by MTT assay. Doxorubicin efflux assay by flow cytometry, P-gp protein expression by western blot analysis, immunofluorescence for P-gp by confocal microscopy, quantitative real-time PCR and P-gp ATPase activity assay were used to study the possible underlying mechanisms of action of effective tanshinones.ResultsBi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased digoxin efflux ratio in a concentration-dependent manner, indicating their inhibitory effects on P-gp function; whereas, tanshinone I, tanshinone IIA and miltirone had no inhibitory effects. Moreover, both cryptotanshinone and dihydrotanshinone could potentiate the cytotoxicity of doxorubicin and irinotecan in P-gp overexpressing SW620 Ad300 colon cancer cells. Results from mechanistic studies revealed that these two tanshinones increased intracellular accumulation of the P-gp substrate anticancer drugs, presumably by down-regulating P-gp mRNA and protein levels, and inhibiting P-gp ATPase activity.ConclusionsTaken together, these findings suggest that cryptotanshinone and dihydrotanshinone could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies for colon cancer.  相似文献   

19.
《Phytomedicine》2014,21(8-9):1110-1119
The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy.  相似文献   

20.
陈璇  毛铃雅  王钦  王红宁  雷昌伟 《微生物学报》2023,63(11):4133-4143
转座子是介导细菌耐药性传播的重要可移动遗传元件。Tn7转座子与细菌耐药密切相关,其携带转座模块和Ⅱ类整合子系统。Tn7编码转座相关蛋白TnsABCDE进行“剪切-粘贴”机制转座,转座核心TnsABC也可与三链DNA或Cas-RNA复合物结合实现转座。近年来新发现了多种介导多重耐药的Tn7转座子,其在介导细菌抗生素、消毒剂和重金属抗性基因的获得、传播扩散等方面发挥了重要作用。本文综述了细菌中Tn7转座子的遗传结构、转座机制、流行以及新发现的介导多重耐药的Tn7转座子,以期为细菌中Tn7转座子的深入研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号