首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Septate junctions develop initially just basad from apical junctional complexes at the apical ends of regenerating gastrodermal cells. The first morphological indication of differentiation of the junction is the appearance of gentle undulations of the plasma membranes of apposing cells. Subsequently dense dots develop at fairly regular intervals at the cytoplasmic surface of one cell, while SER cisternae become localized opposite them near the surface of the apposing cell. The dense dots are associated with bulges which narrow the intercellular space. Later the dense dots are replaced by filaments aligned along the inner leaflet of the parent cell. Strands of amorphous deposits form connections between SER cisternae and the sister membrane on the opposite side of the junction. Ruthenium red staining provides information on precursors which occupy the intercellular space between the apposed plasma membranes. As development of the junction progresses, ruthenium red stains only the newly formed septa but not the interseptal matrix. Regular arrangement of individual septa seems to be completed under the control of V-projections from both of their surfaces. Precursors for the structural material of the septa may be a secretory product derived from the SER. Dense dots and their derived filaments probably serve as reinforcing material for strengthening the cell membrane of the junction.  相似文献   

2.
Two special areas involving membranous components in strain KB cells were studied by electron microscopy. The first area described is that of the subsurface regions of two apposing cells in which flattened cisternae (one cisternae in each subsurface region) with membranes spaced 110–230 A apart were found in a confrontation alignment. The long dimension of the profiles of these cisternae ranges from 0.5 to 2 µ. At these intercellular contact areas, each cisterna is closely applied to the adjacent plasma membrane; the intervening space is 60–100 A. We have named the cisternae in these roughly symmetrical areas of cell contact the subsurface confronting cisternae. Communications between these cisternae and those of the rough-surfaced endoplasmic reticulum also were observed. The second area described is that of the intracytoplasmic confronting cisternae. These cisternae were observed as oval or round images about 0.3–1.4 µ in diameter, each image being composed of a pair of concentrically arranged confronting cisternae with membranes spaced 200–400 A apart. The apposing membranes of the two confronting cisternae are electron opaque, smooth, and free of ribosomes, whereas the unapposed membranes are less dense, scalloped, and associated with ribosomes. The spacing between the two intracytoplasmic confronting cisternae is 70–110 A.  相似文献   

3.
The development of specialized intercellular junctions in cultured cells was studied ultrastructurally. MDCK cells, derived from dog kidney, were fixed in situ at proper times after replating, and the sections were cut perpendicular to the plane of the monolayer. In three or four days, the apposition of cell membranes and condensation of extracellular flocculent material were observed between the neighboring cells, and such were regarded as the early signs of desmosome formation. In many cases, a desmosome was formed first, and the formation of a tight junction followed on the apical (medium facing) side. Finally, all intercellular spaces were closed by a junctional complex at the apical edge. In the complex, a tight junction, (intermediate junction) and desmosome(s) succeeded each other in a medium-substratum direction in all cases. In glutaraldehyde-OsO4 fixed specimens, the intermediate dense line in the desmosome was ascertained from the infant stage of development, while in OsO4 fixed material, the structure was obscure throughout the observation but side-arm-like projections were more prominent.  相似文献   

4.
Secretory canals, lined with an epithelium, occur in many families, e.g., Umbelliferae, Compositae. These canals are said to extend continuously through the root and shoot systems and are known, in some cases, to secrete resins, essential oils, etc. In Xanthium the canals arise schizogenously from cells derived from canal initials. Subsequent divisions lead to a ring of 7–12 epithelial cells surrounding a central cavity. During maturation the epithelium becomes crushed and obliterated. Canals were examined in petioles of Xanthium pensyhanicum (Cocklebur) grown under long day illumination to maintain vegetative growth. The fine structure of the canal and its epithelium was studied by electron microscopy of thin sections cut transverse to the principal axis of petioles from leaves in an early stage of development. The canal proper is delimited by walls of epithelial cells which protrude into a scallop shaped cavity. In comparison to the surrounding parenchyma, the epithelial cells are smaller, cytoplasmically more dense, and less vacuolate. The epithelium contains pleomorphic starch-free plastids with planar thylakoids frequently stacked into grana; thus, the plastids are presumed photosynthetically active. Mitochondria are abundant and often dense. The cytoplasm is rich in free polysomes, and smooth endoplasmic reticulum predominates over the rough form. Spheroidal granules averaging about 530 nm in diameter are numerous in the epithelium and appear at lower concentration in neighboring cells. Many features of fine structure of the epithelial cells suggest that a high metabolic activity is present in this tissue during this early stage of development. A possible function of the canals is defense against insect predation and animal grazing.  相似文献   

5.
Abstract. Late primitive streak embryos were dissected to reveal the junction between the visceral (VE) and parietal (PE) extraembryonic endoderm. Scanning electron microscopy showed that the two cell types differ markedly in their surface morphology and intercellular organization: the VE cells have numerous apical microvilli and form part of a continuous epithelial layer, while the smoother PE cells are scattered individually over the surface of Reichert's membrane. One interpretation of the morphology of the junction between the two tissues is that visceral endoderm cells in this region are detaching from the epithelial layer, migrating on to Reichert's membrane and differentiating into parietal endoderm. Preparatory to this, the visceral endoderm cells in the junctional zone may undergo extensive reorganization of their surface membranes.  相似文献   

6.
北京鸭产卵期输卵管管状腺细胞超微结构研究   总被引:1,自引:0,他引:1  
用电子显徽镜对北京鸭输卵管管状腺细胞进行观察。鸭输卵管由五部分组成:漏斗、蛋白分泌部、峡部、壳腺和阴道。蛋白分泌部的管状腺细胞有四种类型。A型细胞有电子密度深色颗粒;B型细胞充满了无定型低电子密度物质;C型细胞具有非常明显的粗面内质网和高尔基复合体;D型细胞是由致密的颗粒和低电子密度的颗粒所组成,腔内充满分泌颗粒。我们在这篇文章中分析了蛋白分泌周期的四个不同阶段。  相似文献   

7.
During embryonic and neonatal mouse incisor tooth morphogenesis, direct epithelial-mesenchymal cell contacts were observed by electron microscopy. These direct contacts were evident along the epithelial-mesenchymal interface in the differentiation zone in which inner enamel epithelium was as yet a dividing cell population which had not as yet synthesized and secreted the enamel organic matrix. This region of cell differentiation was also characterized by the appearance of cell processes which extended from the epithelia through the basal lamina. Following the appearance of epithelial cell processes penetrating through the basal lamina, ectomesenchymal cell processes extended across the extracellular matrix and penetrated through the basal lamina and resulted in the formation of contact zones. Following degradation of the basal lamina, the mesenchymal cell processes penetrated into clefts within the preameloblast cells and formed cell contacts. By a combination of tannic acid and uranium acetate staining we observed that the tannic acid stain penetrated through intercellular spaces formed between the apposing mesenchymal and epithelial plasma membrane surfaces. We speculate that direct heterotypic cell contacts, which occur prior to the cessation of preameloblast cell division and precede the secretion of enamel proteins, may be instructive in the induction of enamel protein biosynthesis.  相似文献   

8.
MATURATION OF RAT MAST CELLS : An Electron Microscope Study   总被引:9,自引:8,他引:1       下载免费PDF全文
Electron microscope study of rat mast cell maturation corroborates certain interpretations of features of mast cell differentiation based on light microscope studies. In addition, the ultrastructural variation observed in the granules of differentiating mast cells suggests that granule formation begins with the elaboration of dense granules about 70 mµ in diameter inside Golgi vacuoles. These progranules appear to aggregate inside a membrane and fuse to form dense cords 70 to 100 mµ in diameter. These dense cords are embedded in a finely granular material possibly added to the developing granule by direct continuity between perigranular membranes and cisternae of rough endoplasmic reticulum. The dense cords and finely granular material then appear to be replaced by a mass of strands about 30 mµ in diameter, thought to be a reorganization product of the two formerly separate components. A process interpreted as compaction of the strands completes the formation of the dense, homogeneous granules observed in mature rat mast cells. The similarity between mast cell granule formation and the elaboration of other granules is considered, with special reference to rabbit polymorphonuclear leukocyte azurophil granules. The relationships between the ultrastructural, histochemical, and radioautographic characteristics of mast cell granule formation are considered, and the significance of the perigranular membrane is discussed.  相似文献   

9.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

10.
本文报道晶状体纤维细胞间间隙连接的形态结构。我们利用冰冻断裂技术,在不同部位的球-和-凹连结的头部以及在纤维细胞和纤维细胞之间都观察到间隙连接的存在。通过极其丰富的上述连接,可实现细胞间代谢物和离子的传递。作者认为:对正常晶状体纤维细胞之间的间隙连接的深入了解,将会为晶状体发病机制的研究提供新的线索。  相似文献   

11.
This report provides information on the morphology of rat intestinal epithelial cells during fat absorption. In addition, the role of protein metabolism in this process has been evaluated by blocking its synthesis with puromycin and studying the fine structure of mucosal cells from rats at various times after fat intubation. The results indicate that SER-derived vesicles, containing fat droplets, migrate from the apical cytoplasm of the absorptive cell and fuse with saccules or vacuoles of the Golgi complex. Arguments are made that the Golgi complex is important in completing chylomicron formation and in providing appropriate enveloping membranes for the chylomicron. Such membranes may be necessary for Golgi vacuoles to fuse with the lateral cell membranes and release chylomicra. Puromycin treatment causes the absorptive cell to accumulate increased quantities of lipid that are devoid of membrane during fat absorption. In addition, puromycin-treated cells contain much less RER and Golgi membranes are strikingly decreased in number. In this paper we discuss the consequences of these abnormalities and suggest that continued protein synthesis by the RER is required in order to generate Golgi membranes. If such membranes are absent the cell's ability to discarge chylomicra is impaired and lipid accumulates.  相似文献   

12.
During the investigation of the embryogenesis of the rat submandibular gland (SMG), direct epithelial-mesenchymal and epithelial-nerve contacts were observed by light and electron microsopy. These contacts were seen at the epithelial-mesenchymal interface of the end buds of the initial four to twelve branches of the glandular rudiment during the period of rapid branching and budding of the analage. The epithelial-mesenchymal contacts were made by either mesenchymal or epithelial cell extensions which penetrated small gaps in the basal lamina to contact an apposing cell. The epithelial-mesenchymal contact zones showed several morphologic variations, but no septate or gap junctions were seen. The epithelial-nerve contacts were primarily of the intermediate contact zone variety although some tight-type contacts were seen. They were not typical synaptic junctions. The fine structure and importance of these unusual contact zones in the prenatal differentiation of the submandibular gland rudiment are discussed.  相似文献   

13.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined.  相似文献   

14.
Adherens junctions play pivotal roles in cell and tissue organization and patterning by mediating cell adhesion and cell signaling. These junctions consist of large multiprotein complexes that join the actin cytoskeleton to the plasma membrane to form adhesive contacts between cells or between cells and extracellular matrix. The best-known adherens junction is the zonula adherens (ZA) that forms a belt surrounding the apical pole of epithelial cells. Recent studies in Drosophila have further illuminated the structure of adherens junctions. Scaffolding proteins encoded by the stardust gene are novel components of the Crumbs complex, which plays a critical role in ZA assembly.1-3 The small GTPase Rap1 controls the symmetric re-assembly of the ZA after cell division.4 Finally, the asymmetric distribution of adherens junction material regulates spindle orientation during asymmetric cell division in the sensory organ lineage.  相似文献   

15.
The secretory coils of glutaraldehyde-osmium tetroxide-fixed and Epon-Araldite-embedded eccrine sweat glands from the palms of young men were studied with the electron microscope. The myoepithelial cells lie on the epithelial side of the basement membrane and abut other epithelial elements directly. The irregularly serrated base of the cell has dense thickenings along the plasma membrane which alternate with zones bearing pits; the smooth apical surface lacks dense thickenings, is studded with pits, and conjoined to secretory cells by occasional desmosomes. Masses of myofilaments, 50 A in diameter, fill most of the cell and are associated with irregular dense zones. In cross-section the arrangement of the myofilaments seems identical with that of the I band of striated muscle, and the dense zone has typical Z band structure. A few microtubules and cytoplasmic cores bearing profiles of the endoplasmic reticulum, filamentous mitochondria, and glycogen granules penetrate the fibrillar masses and run parallel to the oriented myofilaments. In the perinuclear zone, Golgi membranes, rough- and smooth-surfaced elements of the endoplasmic reticulum, mitochondria, glycogen, microtubules, lipid, pigment, and dense granules are variable components in the cytoplasm. The interrelationships of the myoepithelial cells with the secretory cells suggest that the former may act as regulators, controlling the flow of metabolites to the secretory epithelium.  相似文献   

16.
Junctional Adhesion Molecules (JAMs) are components and regulators of the well-characterized epithelial and endothelial tight junction. Since the molecular components of native fibroblast adherens-like junctions remain poorly described we determined JAM expression profiles in fibroblasts. We found JAM-C on human dermal, lung, and corneal primary fibroblast cultures. Within murine lines, JAM-A was found in L-cells, JAM-C in 3T3 L1 cells, and both JAM-A and JAM-C were co-expressed in NIH 3T3 fibroblasts. In primary dermal fibroblasts, JAM-C concentrated at zipper-like junctions that formed between apposing cells. Dual immunostaining showed JAM-C co-localization with the ZO-1 intracellular scaffolding molecule at cell contacts that ranged from 7 μm to over 25 μm in length. JAM-C also labeled similar zipper-like junctions detected with N-Cadherin and Cadherin-11 antibodies. We conclude that endogenous JAM-C is an integral component of the dermal fibroblast adherens-like junction, and our data extend the expression and potential function of JAMs into mesenchymal tissues.  相似文献   

17.
There is growing evidence that multivesicular bodies and cell wall-associated paramural bodies participate in the enhanced vesicle trafficking induced by pathogen attack. Here, we performed transmission electron microscopy in combination with cytochemical localization of H2O2 to investigate multivesicular compartments during establishment of compatible interaction in susceptible barley (Hordeum vulgare) and during hypersensitive response in resistant MLA12-barley infected by the barley powdery mildew fungus (Blumeria graminis f. sp. hordei). Multivesicular bodies, intravacuolar vesicle aggregates and paramural bodies proliferated in the penetrated epidermal cell during development of the fungal haustorium. These vesicular structures also proliferated at the periphery of intact cells, which were adjacent to the hypersensitive dying cells and deposited cell wall appositions associated with H2O2 accumulation. All plasmodesmata between intact cells and hypersensitive cells were constricted or blocked by cell wall appositions. These results suggest that multivesicular compartments participate in secretion of building blocks for cell wall appositions not only to arrest fungal penetration but also to contain hypersensitive cell death through blocking plasmodesmata. They may also participate in internalization of damaged membranes, deleterious materials, nutrients, elicitors and elicitor receptors.  相似文献   

18.
Samples taken at different intervals of time from suspension cultures of the NCTC 1469 line of mouse liver—derived (ML) cells infected with a mouse hepatitis virus have been studied with the electron microscope. The experiments revealed that the viruses are incorporated into the cells by viropexis within 1 hour after being added to the culture. An increasing number of particles are found later inside dense cytoplasmic corpuscles similar to lysosomes. In the cytoplasm of the cells from the samples taken 7 hours after inoculation, two organized structures generally associated and never seen in the controls are observed: one consists of dense material arranged in a reticular disposition (reticular inclusion); the other is formed by small tubules organized in a complex pattern (tubular body). No evidence has been found concerning their origin. Their significance is discussed. With the progression of the infection a system of membrane-bounded tubules and cisternae is differentiated in the cytoplasm of the ML cells. In the lumen of these tubules or cisternae, which are occupied by a dense material, numerous virus particles are observed. The virus particles which originate in association with the limiting membranes of tubules and cisternae are released into their lumen by a "budding" process. The virus particles are 75 mµ in diameter and possess a nucleoid constituted of dense particles or rods limiting an electron transparent core. The virus limiting membrane is sometimes covered by an outer layer of a dense material. In the cells from the samples taken 14 to 20 hours after inoculation, larger zones of the cell cytoplasm are occupied by inclusion bodies formed by channels or cisternae with their lumens containing numerous virus particles. In the samples taken 20 hours or more after the inoculation numerous cells show evident signs of degeneration.  相似文献   

19.
1. In view of widely diverse views held about the identity and structure of the Golgi apparatus in neurons of Mollusca, particularly gastropods, a study has been made on neurons of the common limpet, Patella vulgata, both by light and electron microscopy. A report is given also of observations made on epithelial cells of Patella by electron microscopy. 2. As revealed by Kolatchev's method, the Golgi apparatus in neurons consists basically of black filaments lying to one side of the nucleus. The filaments generally anastomose to form networks of various complexity. Rarely some cells contain only discrete filaments. Associated with some of the filaments is a weakly osmiophilic substance identified as archoplasm. Kolatchev's method also revealed spheroidal bodies (neutral red bodies, "lipochondria," etc.). 3. It has not been possible to demonstrate the Golgi apparatus using either iron-haematoxylin or Sudan black. 4. Examination of Kolatchev's preparations by electron microscopy has revealed that some of the Golgi filaments consist of chromophilic and chromophobic components. The chromophilic component consists of dense lamellae. 5. After fixation in buffered osmium tetroxide solution and examination by electron microscopy, it has been concluded that (a) the chromophilic component of the Golgi apparatus corresponds to a system of paired membranes (which usually enclose an inner dense substance), (b) the chromophobic component corresponds to a substance lying within small dilations of the paired membrane, and (c) the archoplasm corresponds to numerous small vesicles. 6. The paired membranes branch, anastomose, and can often be traced back to a common source. They are interpreted as lamelliform folds, and occasionally tubular processes, of essentially a single Golgi membrane. In cells containing a Golgi network it is suggested that the membrane extends through the whole of the apparatus in such a way that the substance it encloses may be regarded as being in a continuous phase. 7. Epithelial cells of Patella contain a juxtanuclear Golgi apparatus with an ultrastructure similar to that described for neurons.  相似文献   

20.
A DISTINCTIVE CELL CONTACT IN THE RAT ADRENAL CORTEX   总被引:8,自引:4,他引:4       下载免费PDF全文
Extensive cell contacts which resemble septate junctions occur between cells in the three major zones of the rat adrenal cortex. Characteristically, they extend between small intercellular canaliculi and the periendothelial space, frequently interrupted by gap junctions and rarely by desmosomes. Zonulae occludentes have not been identified in the adrenal cortex. Along this distinctive cell contact, the cell membranes of apposing cells are separated by 210–300 a bisected by irregularly spaced 100–150-A extracellular particles which are often circular in profile. In lanthanum preparations, these particles appear to form a continuous chain throughout the intercellular space and are visualized as an alveolate structure in sections parallel to the plane of the cell membrane. The cell membrane in the area of septate-like contact does not differ from nonjunctional areas of the cell membrane in freeze-fracture replicas. The cell contact retains its integrity after cell dispersion and after the separation of cell membranes from disrupted cells. The intercellular particles also persist after brief extraction in lipid solvents. Besides adherence, possible functions of this adrenal contact include maintenance of the width of the extracellular space, the provision of channels between intercellular canaliculi and the bloodstream, and utilization as cation depots. Similar structures are also present between adrenal cortical cells of several other species and between interstitial cells of the testis. This type of cell contact may, in fact, be a typical feature of steroid-hormone-secreting tissues in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号