首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eae gene has recently been shown to be necessary for the attaching and effacing (AE) activity of enteropathogenic Escherichia coli (EPEC) on intestinal epithelial cells. In this paper we report the cloning and nucleotide sequence of a similar gene from a strain of enterohemorrhagic E. coli (EHEC) serotype O157:H7. An EHEC eae sequence was identified which was 97% homologous to the EPEC eae gene for the first 2200 bp and 59% homologous over the last 800 bp. Both eae sequences show 50% homology to the central region of the Yersinia pseudotuberculosis inv gene. The receptor-binding domain of the inv gene product lies near the carboxyl terminus. This suggests that the predicted amino acid sequence divergence in the carboxyl termini of the eae gene products might result in different antigenic and receptor specificity of these putative adhesins.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) can produce attaching and effacing (AE) lesions on intestinal epithelium in vitro and in vivo. A gene necessary to cause the AE lesion has been identified and designated Escherichia coli attaching and effacing A (eaeA) gene. In this study, an alkaline phosphatase (ALP)-conjugated oligonucleotide probe for the eaeA gene was developed and used to detect the eaeA gene among 163 strains of classical EPEC and 25 strains of EHEC O157. The prevalence rates of eaeA gene in the strains of classical EPEC and EHEC O157 were 51.5 and 100%, respectively. The eaeA-positive rate (60.0%) in strains of class I EPEC serogroups (O26, O55, O86, O111, O119, O125, O126, O127, O128ab, and O142) was significantly higher than that (22.9%) in strains of the class II EPEC serogroups (O18, O44, O114) (P<0.01). A total of 109 eaeA-positive classical EPEC and EHEC O157 were positive for fluorescent actin staining (FAS) assay, whereas 79 eaeA-negative classical EPEC were negative. Both the sensitivity and specificity of the eaeA probe versus the FAS assay positivity were 100%. Thus, use of the ALP-conjugated oligonucleotide probe for the eaeA gene would be specific and reliable in identifying the adherence capability of EPEC and EHEC.  相似文献   

3.
Enterohaemorrhagic Escherichia coli (EHEC) has emerged as an important agent of diarrhoeal disease. Attachment to host cells, an essential step during intestinal colonization by EHEC, is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (A/E) lesion, directly beneath bound bacteria. The outer membrane protein intimin is required for the formation of this structure, as is Tir, a bacterial protein that is translocated into the host cell and is thought to function as a receptor for intimin. To understand intimin function better, we fused EHEC intimin to a homologous protein, Yersinia pseudotuberculosis invasin, or to maltose-binding protein. The N-terminal 539 amino acids of intimin were sufficient to promote outer membrane localization of the C-terminus of invasin and, conversely, the N-terminal 489 amino acids of invasin were sufficient to promote the localization of the C-terminus of intimin. The C-terminal 181 residues of intimin were sufficient to bind mammalian cells that had been preinfected with an enteropathogenic E. coli strain that expresses Tir but not intimin. Binding of intimin derivatives to preinfected cells correlated with binding to recombinant Tir protein. Finally, the 181-residue minimal Tir-binding region of intimin, when purified and immobilized on latex beads, was sufficient to trigger A/E lesions on preinfected mammalian cells.  相似文献   

4.

Background  

In order to identify new virulence determinants in Y. pseudotuberculosis a comparison between its genome and that of Yersinia pestis was undertaken. This reveals dozens of pseudogenes in Y. pestis, which are still putatively functional in Y. pseudotuberculosis and may be important in the enteric lifestyle. One such gene, YPTB1572 in the Y. pseudotuberculosis IP32953 genome sequence, encodes a protein with similarity to invasin, a classic adhesion/invasion protein, and to intimin, the attaching and effacing protein from enteropathogenic (EPEC) and enterohaemorraghic (EHEC) Escherichia coli.  相似文献   

5.
Abstract A number of enteric pathogens, including enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli , Hafnia alvei , a strain of Citrobacter freundii , and rabbit EPEC strain RDEC-1 cause attaching-effacing (AE) lesions in the gut mucosa. These bacteria have a pathogenicity cassette (locus of enterocyte effacement or LEE) containing the eaeA gene. This gene encodes intimin, an outer membrane protein required for production of AE lesions. RDEC-1, a non-invasive enteropathogen in young rabbits, produces AE lesions morphologically indistinguishable from lesions caused by human AE bacterial strains. The RDEC-1 example of E. coli diarrhea in rabbits is an important model for studying the pathogenesis of AE bacteria in a natural infection and for analyzing specific roles of the components of LEE. In order to better understand the role of intimin in the development of AE lesions, a portion of DNA within RDEC-1 LEE, containing the eaeA gene and an upstream open reading frame (ORF), was sequenced. The RDEC-1 eaeA gene shared 87%, 92%, and 93% DNA sequence identity and > 80% amino acid sequence identity with the eaeA genes of C. freundii biotype 4280, EHEC O157:H7, and EPEC O127:H6, respectively. The carboxy-terminal 280 amino acid residues of intimin has 80%, 56%, and 54% identity with C. freundii , EHEC O157:H7, and EPEC O127:H6 intimins, respectively. The predicted protein encoded by the upstream ORF (156 amino acids) shares 95%, 97%, and 99% amino acid identity with predicted proteins from C. freundii , EHEC O157:H7, and EPEC O127:H6, respectively. The high degree of sequence homology of the ORF and the eaeA gene of RDEC-1 with those of other AE bacteria suggests an evolutionary relationship of LEE and supports and facilitates the use of the RDEC-1 model for studying the role of LEE in pathogenesis.  相似文献   

6.
7.
We have cloned and determined the nucleotide sequence of the eae gene from a dog attaching and effacing (A/E) Escherichia coli (DEPEC) strain 4221. When comparing the predicted amino acid sequence of the eaeDEPEC to that of the Eae proteins from enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli O157:H7 (EHEC), Citrobacter freundii biotype 4280, and a swine A/E E. coli strain O45 (PEPEC), the overall sequence identity was 84, 81, 83 and 83%, respectively, with the greatest divergence at the C-terminal end, the putative receptor-binding portion. Interestingly, the DEPEC Eae shares the greatest identity at the C-terminal region with the Citrobacter freundii Eae protein. We have constructed and purified a maltose-binding fusion protein (MBP) containing the product of the entire eae gene of the DEPEC strain 4221. Binding of MBP-EaeDEPEC fusion protein to HEp-2 cells was demonstrated by immunofluorescence microscopy. In addition, the Eae protein of DEPEC (4221) demonstrated a strong serological relationship with that of EPEC (E2348/69) as observed using a polyclonal antiserum against MBP-EaeDEPEC fusion protein.  相似文献   

8.
Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium. This process is mediated by intimin, an outer membrane protein that is homologous to the invasins of pathogenic Yersinia. The intimin (eae) gene is part of a pathogenicity island, a 35-kb segment of DNA that has been acquired independently in different groups of pathogens. Nucleotide sequences of eae of three EPEC and four EHEC strains representing distinct clonal lineages revealed an exceptionally high level of divergence (15%) in the amino acid sequences of alpha, beta, and gamma intimin molecules, most of which is concentrated in the C-terminal region. The gamma intimin sequences from E. coli strains with serotypes O157:H7, O55:H7, and O157:H- are virtually identical, supporting the hypothesis that these bacteria belong to a single clonal lineage. Sequences of beta intimin of EPEC strains of serotypes O111:H2 and O128:H2 show substantial differences from alpha and gamma intimins, indicating that these strains have evolved independently. Strong nonrandom clustering of polymorphic sites indicates that the intimin genes are mosaics, suggesting that protein divergence has been accelerated by recombination and diversifying selection.  相似文献   

9.
A key strategy in microbial pathogenesis is the subversion of the first line of cellular immune defences presented by professional phagocytes. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC respectively) remain extracellular while colonizing the gut mucosa by attaching and effacing mechanism. EPEC use the type three secretion system effector protein EspF to prevent their own uptake into macrophages. EPEC can also block in trans the internalization of IgG-opsonized particles. In this study, we show that EspJ is the type three secretion system effector protein responsible for trans -inhibition of macrophage opsono-phagocytosis by both EPEC and EHEC. While EspF plays no role in trans -inhibition of opsono-phagocytosis, espJ mutants of EPEC or EHEC are unable to block uptake of opsonized sheep red blood cells (RBC), a phenotype that is rescued upon complementation with the espJ gene. Importantly, ectopic expression of EspJEHEC in phagocytes is sufficient to inhibit internalization of both IgG- and C3bi-opsonized RBC. These results suggest that EspJ targets a basic mechanism common to these two unrelated phagocytic receptors. Moreover, EspF and EspJ target independent aspects of the phagocytic function of mammalian macrophages in vitro .  相似文献   

10.
AIMS: Bovine meat is the principal source of human contamination of attaching and effacing Escherichia coli, including enterohaemorrhagic E. coli O157. The aim was to study the prevalence of these strains on bovine carcasses in Algeria. METHODS AND RESULTS: Two-hundred and thirty carcasses were swabbed and analysed by classical microbiological methods for total E. coli counts and for the presence of pathogenic E. coli. The E. coli counts were high, with a 75th percentile of 444.75 CFUs cm(-2). For pathogenic E. coli, more than 7% of the tested carcasses were positive for E. coli O157. Eighteen E. coli O157 strains were isolated and typed by multiplex PCR. The main isolated pathotype (78%) was eae+ stx2+ ehxA+. In addition to E. coli O157, other attaching and effacing E. coli (AEEC) were also detected from carcasses by colony hybridization after pre-enrichment and plating on sorbitol MacConkey agar using eae, stx1 and stx2 probes. Thirty carcasses (13%) on the 230 analysed harboured at least one colony positive for one of the tested probes. These positive carcasses were different from those positive for E. coli O157. Sixty-six colonies (2.9%) positive by colony hybridization were isolated. The majority (60.6%) of the positive strains harboured an enteropathogenic E. coli-like pathotype (eae+ stx-). Only three enterohaemorrhagic E. coli (EHEC)-like (eae+ stx1+) colonies were isolated from the same carcass. These strains did not belong to classical EHEC serotypes. CONCLUSIONS: In this study, the global hygiene of the slaughterhouse was low, as indicated by the high level of E. coli count. The prevalence of both E. coli O157 and other AEEC was also high, representing a real hazard for consumers. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study of this type in Algeria, which indicates that the general hygiene of the slaughterhouse must be improved.  相似文献   

11.
Tir, the translocated intimin receptor of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) and Citrobacter rodentium, is translocated into the host cell by a filamentous type III secretion system. Epithelial cell culture has demonstrated that Tir tyrosine phosphorylation is necessary for attaching effacing (A/E) lesion formation by EPEC and C. rodentium, but is not required by EHEC O157:H7. Recent in vivo work on C. rodentium has reported that Tir translocation, but not its phosphorylation, is necessary for colonization of the mouse colon. In this study we investigated the involvement of Tir and its tyrosine phosphorylation in EPEC and EHEC human intestinal colonization, N-WASP accumulation and F-actin recruitment using in vitro organ culture (IVOC). We showed that both EPEC and EHEC Tir are translocated into human intestinal epithelium during IVOC and that Tir is necessary for ex vivo intestinal colonization by both EPEC and EHEC. EPEC, but not EHEC, Tir is tyrosine phosphorylated but Tir phosphorylation-deficient mutants still colonize intestinal explants. While EPEC Tir recruits the host adaptor protein Nck to initiate N-WASP-Arp2/3-mediated actin polymerization, Tir derivatives deficient in tyrosine phosphorylation recruit N-WASP independently of Nck indicating the presence of a tyrosine phosphorylation-independent mechanism of A/E lesion formation and actin recruitment ex vivo by EPEC in man.  相似文献   

12.
13.
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) colonize the gut mucosa via attaching and effacing (A/E) lesions. For years cultured cells were used as model systems to study A/E lesion formation, which showed actin accumulation under attached bacteria that can be raised above the plasma membrane in a pedestal-shaped structure. Studies of prototypical strains revealed that although both converge on N-WASP EPEC and EHEC O157:H7 use different actin polymerization pathways. While EPEC use the Tir-Nck pathway, TirEHECO157 cooperates with TccP/EspFU to activate N-WASP. However, recent in vitro studies revealed a common EPEC and EHEC Tir-dependent and Nck-independent inefficient actin polymerization pathway. Unexpectedly, bacterial populations studies demonstrated that most non-O157 EHEC strains and EPEC lineage 2 strains can utilize both the Nck and TccP2 pathways in vitro . Importantly, in vivo and ex vivo mucosal infections have shown efficient A/E lesion formation independently of Nck and TccP. This review covers the progression in our understanding of EPEC and EHEC infection, through the different milestones obtained using cultured cells, to the realization that EPEC and EHEC have much more in common than previously appreciated and that mucosal attachment and microvillous effacement may be the key events, rather than pedestal formation.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) each promote the reorganization of actin into filamentous pedestal structures beneath attached bacteria during colonization of the intestinal epithelium. Central to this process is the translocation of the protein Tir (translocated intimin receptor) into the plasma membrane of host cells, where it interacts with the bacterial outer membrane protein intimin and triggers cellular signalling events that lead to actin rearrangement. Actin signalling by EPEC Tir requires a tyrosine residue, Y474, which is phosphorylated in the host cell. In contrast, EHEC Tir lacks this residue and generates pedestals independently of tyrosine phosphorylation. Consistent with this difference, recent work indicates that EHEC Tir cannot functionally replace EPEC Tir. To identify the role that tyrosine phosphorylation of EPEC Tir plays in actin signalling, we generated chimeric EHEC/EPEC Tir proteins and identified a 12-residue sequence of EPEC Tir containing Y474 that confers actin-signalling capabilities to EHEC Tir when the chimera is expressed in EPEC. Nck, a mammalian adaptor protein that has been implicated in the initiation of actin signalling, binds to this sequence in a Y474 phosphorylation-dependent manner and is recruited to the pedestals of EPEC, but not of EHEC.  相似文献   

15.
Enterohaemorrhagic Escherichia coli (EHEC) are food-borne intestinal pathogens with a low infectious dose. Adhesion of some EHEC strains to epithelial cells is attributed, in part, to intimin, but other factors may be required for the intestinal colonizing ability of these bacteria. In order to identify additional adherence factors of EHEC, we generated transposon mutants of a clinical EHEC isolate of serotype O111:H-, which displayed high levels of adherence to cultured Chinese hamster ovary (CHO) cells. One mutant was markedly deficient in CHO cell adherence, human red blood cell agglutination and autoaggregation. Sequence analysis of the gene disrupted in this mutant revealed a 9669 bp novel chromosomal open reading frame (ORF), which was designated efa1, for EHEC factor for adherence. efa1 displayed 28% amino acid identity with the predicted product of a recently described ORF from the haemolysin-encoding plasmid of EHEC O157:H7. The amino termini of the putative products of these two genes exhibit up to 38% amino acid similarity to Clostridium difficile toxins A and B. efa1 occurred within a novel genetic locus, at least 15 kb in length, which featured a low G+C content, several insertion sequence homologues and a homologue of the Shigella flexneri enterotoxin ShET2. DNA probes prepared from different regions of efa1 hybridized with all of 116 strains of attaching-effacing E. coli (AEEC) of a variety of serotypes, including enteropathogenic E. coli (EPEC) and EHEC, but with none of 91 non-AEEC strains. Nevertheless, efa1 was not required for the attachment-effacement phenotype, and the efa1 locus was not physically linked to the locus for enterocyte effacement (LEE) pathogenicity island, which is responsible for this phenotype in EPEC. These findings suggest that efa1 encodes a novel virulence-associated determinant of AEEC, which contributes to the adhesive capacity of these bacteria.  相似文献   

16.
Intimin is essential for attaching and effacing lesions by pathogens such as enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), and the antigenic polymorphism of intimin determines distinct subtypes. Our aim was to investigate the presence of immunoglobulin G (IgG) and IgA antibodies reactive to α, β and γ intimins in serum and colostrum from healthy Brazilian adults. We found seric IgG and secretory IgA antibodies reactive to conserved and variable regions of α, β and γ intimins and a positive correlation between the concentrations of these antibodies in both serum and colostrum that suggested cross reactivity among anti-intimin antibodies, as was confirmed by immunoblotting and absorption. The concentrations of anti-conserved region antibodies were higher than those of variable region antibodies. The presence of antibodies reactive to EHEC antigens could result from contact with EPEC or with other bacteria of the environment even though this bacterium is not frequent in Brazil, and suggests possible protection against EHEC.  相似文献   

17.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains are closely related human pathogens that are responsible for food-borne epidemics in many countries. Integration host factor (IHF) and the locus of enterocyte effacement-encoded regulator (Ler) are needed for the expression of virulence genes in EHEC and EPEC, including the elicitation of actin rearrangements for attaching and effacing lesions. We applied a proteomic approach, using two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry and a protein database search, to analyze the extracellular protein profiles of EHEC EDL933, EPEC E2348/69, and their ihf and ler mutants. Fifty-nine major protein spots from the extracellular proteomes were identified, including six proteins of unknown function. Twenty-six of them were conserved between EHEC EDL933 and EPEC E2348/69, while some of them were strain-specific proteins. Four common extracellular proteins (EspA, EspB, EspD, and Tir) were regulated by both IHF and Ler in EHEC EDL933 and EPEC E2348/69. TagA in EHEC EDL933 and EspC and EspF in EPEC E2348/69 were present in the wild-type strains but absent from their respective ler and ihf mutants, while FliC was overexpressed in the ihf mutant of EPEC E2348/69. Two dominant forms of EspB were found in EHEC EDL933 and EPEC E2348/69, but the significance of this is unknown. These results show that proteomics is a powerful platform technology for accelerating the understanding of EPEC and EHEC pathogenesis and identifying markers for laboratory diagnoses of these pathogens.  相似文献   

18.
EPEC (enteropathogenic Escherichia coli) and EHEC (enterohaemorrhagic Escherichia coli) are attaching and effacing pathogens frequently associated with infectious diarrhoea. EPEC and EHEC use a T3SS (type III secretion system) to translocate effectors that subvert different cellular processes to sustain colonization and multiplication. The eukaryotic proteins NHERF2 (Na(+)/H(+) exchanger regulatory factor 2) and AnxA2 (annexin A2), which are involved in regulation of intestinal ion channels, are recruited to the bacterial attachment sites. Using a stable HeLa-NHERF2 cell line, we found partial co-localization of AnxA2 and NHERF2; in EPEC-infected cells, AnxA2 and NHERF2 were extensively recruited to the site of bacterial attachment. We confirmed that NHERF2 dimerizes and found that NHERF2 interacts with AnxA2. Moreover, we found that AnxA2 also binds both the N- and C-terminal domains of the bacterial effector Tir through its C-terminal domain. Immunofluorescence of HeLa cells infected with EPEC showed that AnxA2 is recruited to the site of bacterial attachment in a Tir-dependent manner, but independently of Tir-induced actin polymerization. Our results suggest that AnxA2 and NHERF2 form a scaffold complex that links adjacent Tir molecules at the plasma membrane forming a lattice that could be involved in retention and dissemination of other effectors at the bacterial attachment site.  相似文献   

19.
20.
Shiga toxin-producing Escherichia coli (STEC), enteropathogenic E . coli (EPEC) and some strains of Hafnia alvei are capable of inducing attaching and effacing (A/E) lesions, characterized by tight apposition of the bacteria to the eukaryotic membrane and formation of actin-based pedestals. In this study, we report on the identification of EspE, a novel secreted 80 kDa protein of A/E bacteria. During infection, EspE is delivered into the cytoplasm of the infected host cell, where it is detected as a higher-molecular-weight form of 90 kDa. We present evidence that translocated EspE becomes tyrosine phosphorylated and that this modified form of EspE may be identical to Hp90, the putative receptor of EPEC intimin. Bacteria of the classic enterohaemorrhagic E . coli (EHEC) serotype O157:H7 fail to induce a tyrosine phosphorylation of EspE and differ in this respect from other A/E bacteria. Translocated EspE, whether tyrosine phosphorylated or not, becomes incorporated into the bacteria-induced cytoskeletal structures, where it normally colocalizes with filamentous actin. EPEC are also able to induce 'pseudopods', elongated pedestals that have recently been implicated in a novel kind of actin-based motility. EspE is enriched at the tip of these structures, suggesting its involvement in the process of actin dynamics, which is triggered during the attaching and effacing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号