首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual reactions of interesterification and synthesis catalyzed by Candida cylindracea lipase have been tested in reverse microemulsions. The microemulsions used are made of fatty acids or triglycerides, the enzyme dissolved in a very low water quantity, Brij 35 used as surfactant and an alcoholic cosurfactant. In such a system, fats and alcohols are both the substrates of the enzyme and the microemulsion components. Incidentally, non specific Candida cylindracea lipase does not catalyze interesterification of short chain triglycerides, revealing a specificity for the chain length. Interesterification reactions tested in the presence of a given water quantity but with varying water activities show that it is the water activity and not the water quantity which is a fundamental parameter of the system. The effect of the surfactant (Brij 35) on the interesterification reaction is studied. Heptyl-oleate synthesis catalyzed by non-specific lipase is obtained in microemulsions at a 98% yield. Synthesis of glycerol esters is also tested in monophasic medium and mono and diglycerides are obtained.  相似文献   

2.
Enzymatic catalysis in microemulsions: enzyme reuse and product recovery   总被引:1,自引:0,他引:1  
A technique for enzyme reuse and product recovery from enzymatic catalysis in microemulsions is demonstrated. The enzymatic reaction is performed in a homogeneous isotropic microemulsion; AOT (sodium bis-(2-ethyl- hexyl)sulfosuccinate)/isooctane/buffer or C(12)E(5)(penta ethylene glycol dodecyl ether)/heptane/buffer. By small temperature changes the systems are shifted to two phase regions, where an oil-rich phase, containing the product, coexists with a water-rich phase containing surfactant and enzyme. The oil-rich phase may be replaced by an oil solution containing new substrate. Thus, the reaction may be continued and the enzyme reused. This procedure was repeated nine times in the present study. Data on phase behavior in presence and in absence of protein, partitioning of the components and a radioactive-labelled protein between the phases, and the repeated use of horse liver alcohol dehydrogenase (HLADH) in the microemulsions are presented.  相似文献   

3.
Antimicrobial peptides effectively kill antibiotic-resistant bacteria by forming pores in prokaryotes' biomembranes via penetration into the biomembranes' interior. Bicontinuous microemulsions, consisting of interdispersed oil and water nanodomains separated by flexible surfactant monolayers, are potentially valuable for hosting membrane-associated peptides and proteins due to their thermodynamic stability, optical transparency, low viscosity, and high interfacial area. Here, we show that bicontinuous microemulsions formed by negatively-charged surfactants are a robust biomembrane mimetic system for the antimicrobial peptide melittin. When encapsulated in bicontinuous microemulsions formed using three-phase (Winsor-III) systems, melittin's helicity increases greatly due to penetration into the surfactant monolayers, mimicking its behavior in biomembranes. But, the threshold melittin concentration required to achieve these trends is lower for the microemulsions. The extent of penetration was decreased when the interfacial fluidity of the microemulsions was increased. These results suggest the utility of bicontinuous microemulsions for isolation, purification, delivery, and host systems for antimicrobial peptides.  相似文献   

4.
The solubilization and the photosynthetic activity of cyanobacteria (Anabaena variabilis) in water-in-oil microemulsions consisting of (Tween85/Span80)/hexadecane/water is investigated. Transparent and stable solutions containing up to 10(8) cells/mL could be obtained. The physical state and stability of the cells in the microemulsion, as evidenced from optical and electron microscopy, is dependent upon the physical parameters of the system, and in particular on the hydrophylic-lypophilic balance (HLB) of the surfactant system. Conditions could be found, under which the cells in the microemulsion system display photosynthetic activity This was judged by measuring polarographically the oxygen evolution and by studying the photosynthetic activity in the presence of specific inhinbitors.  相似文献   

5.
We report investigations on the percolation of the aqueous phase in water-in-oil microemulsions, comparing systems stabilized by ionic AOT and non-ionic Igepal amphiphiles. First, we briefly review the opposite effect of temperature on the two systems and compare electric conductivity with viscosity data. In the second part, we show that percolation can be induced by high electric fields resulting in a shift of the percolation curve. The electric field measurements allow to investigate the dynamics of clustering of the water droplets to form a network of percolating channels. We examine the slow build-up and the fast decay of the percolating structure, monitoring simultaneously electric conductivity and electric birefringence. In the third part we discuss the effect of some solutes on the percolation curve, especially of small molecules which act as protein denaturants and of native and denatured proteins like methemoglobin, chymotrypsin and gelatin. The spectroscopic determination of the dimerization of hemin, released from denatured hemoglobin, reflects the incorporation of the hemin monomers in the surfactant monolayer. In the gelatin system time resolved electric birefringence shows that even at low concentrations it is the macromolecule which determines the structure of the aqueous domain. In the appendix, a simple estimate of the intrinsic Kerr-constant is given for microemulsion droplets deformed in an electric field.  相似文献   

6.
This research was aimed to characterize microemulsion systems of isopropyl palmitate (IPP), water, and 2∶1 Brij 97 and 1-butanol by different experimental techniques. A pseudoternary phase diagram was constructed using water titration method. At 45% wt/wt surfactant system, microemulsions containing various ratios of water and IPP were prepared and identified by electrical conductivity, viscosity, differential scanning calorimetry (DSC), cryo-field emission scanning electron microscopy (cryo-FESEM) and nuclear magnetic resonance (NMR). The results from conductivity and viscosity suggested a percolation transition from water-in-oil (water/oil) to oil-in-water (oil/water) microemulsions at 30% wt/wt water. From DSC results, the exothermic peak of water and the endothermic peak of IPP indicated that the transition of water/oil to oil/water microemulsions occurred at 30% wt/wt water. Cryo-FESEM photomicrographs revealed globular structures of microemulsions at higher than 15% wt/wt water. In addition, self-diffusion coefficients determined by NMR reflected that the diffusability of water increased at higher than 35% wt/wt water, while that of IPP was in reverse. Therefore, the results from all techniques are in good agreement and indicate that the water/oil and oil/water transition point occurred in the range of 30% to 35% wt/wt water.  相似文献   

7.
8.
The aim of the present study was to make a comparison of the in vitro release rate of diclofenac sodium (DS) from microemulsion (M) vehicles containing soybean oil, nonionic surfactants (Brij 58 and Span 80), and different alcohols (ethanol [E], isopropyl alcohol [I], and propanol [P]) as cosurfactant. The optimum surfactant:cosurfactant (S:CoS) weight ratios and microemulsion areas were detected by the aid of phase diagrams. Three microemulsion formulations were selected, and their physicochemical properties were examined for the pH, viscosity, and conductivity. According to the release rate of DS, M prepared with P showed the significantly highest flux value (0.059 +/- 0.018 mg/cm(2)/h) among all formulations (P < .05). The conductivity results showed that DS-loaded microemulsions have higher conductivity values (18.8-20.2 microsiemens/cm) than unloaded formulations (16.9-17.9 microsiemens/cm), and loading DS into the formulation had no negative effect on system stability. Moreover, viscosity measurements were examined as a function of shear rate, and Newtonian fluid characterization was observed for each microemulsion system. All formulations had appropriate observed pH values varying from 6.70 to 6.85 for topical application. A skin irritation study was performed with microemulsions on human volunteers, and no visible reaction was observed with any of the formulations. In conclusion, M prepared with P may be a more appropriate formulation than the other 2 formulations studied as drug carrier for topical application.  相似文献   

9.
We report here the formation of a microemulsion with non-ionic detergents and cyclohexane. The activity and stability of 20 beta-hydroxysteroid dehydrogenase solubilized in all water systems and in microemulsions of Nonidet P-40: Triton X-35/water/cyclohexane was investigated. In the microemulsion the activity depended on the molecular ratio of water to surfactant (Wo); maximal activity was obtained at Wo of 8.4. The stability in the microemulsion was higher at Wo = 11.75 i.e. the enzyme, retained about 50% of activity after eight days.  相似文献   

10.
In this article, the extraction of cytochrome c utilizing various nonionic surfactant microemulsions has been tested to determine the effect of surfactant structure on protein partitioning. Surfactants tested include a linear alcohol ethoxylate (Neodol 91-2.5), two alkyl phenol ethoxylates (lgepal CO-520, Trycol 6985), and a series of alkyl sorbitan esters that are either ethoxylated (Tweens) or un-ethoxylated (Spans). Initial attempts to extract hemoglobin into Neodol 91-2.5 Winsor II microemulsions (oil-continuous) appeared successful based on heme estimation. Careful analysis showed that the hemoglobin had dissociated prior to extraction and that only the heme was extracted with false positive results. In fact, Neodol 91-2.5 microemulsions were unable to extract a variety of proteins with differing biophysical properties. Among all the other nonionic surfactant microemulsions tested only those made using sorbitan esters extracted significant amounts of cytochrome c. The partition coefficients achieved in this study are more than an order of magnitude higher than that seen previously in the literature for comparable sorbitan systems. However, this partition coefficient is extremely sensitive to ionic strength. At an ionic strength as low as 0.001 M, the partition coefficient is reduced to that seen in previous studies. We have found that protein partitioning in sorbitan ester microemulsions is not a function of water content. In addition, extraction is not a function of either alkyl chain length, or polyethylene oxide molecular weight. Hence, the sorbitan group appears to have an important role in extraction, possibly through a weak electrostatic protein-surfactant interaction. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Self-emulsifying oil/surfactant mixtures can be incorporated into pellets that have the advantages of the oral administration of both microemulsions and a multiple-unit dosage form. The purpose of this work was to study the effects of surfactant hydrophilic–lipophilic balance (HLB) and oil/surfactant ratio on the formation and properties of self-emulsifying microcrystalline cellulose (MCC) pellets and microemulsion reconstitution. Triglycerides (C8–C10) was the oil and Cremophor ELP and RH grades and Solutol the surfactants. Pellets were prepared by extrusion/spheronization using microemulsions with fixed oil/surfactant content but with different water proportions to optimize size and shape parameters. Microemulsion reconstitution from pellets suspended in water was evaluated by turbidimetry and light scattering size analysis, and H-bonding interactions of surfactant with MCC from FT-IR spectra. It was found that water requirements for pelletization increased linearly with increasing HLB. Crushing load decreased and deformability increased with increasing oil/surfactant ratio. Incorporation of higher HLB surfactants enhanced H-bonding and resulted in faster and more extensive disintegration of MCC as fibrils. Reconstitution was greater at high oil/surfactant ratios and the droplet size of the reconstituted microemulsions was similar to that in the wetting microemulsions. The less hydrophilic ELP with a double bond in the fatty acid showed weaker H-bonding and greater microemulsion reconstitution. Purified ELP gave greater reconstitution than the unpurified grade. Thus, the work demonstrates that the choice of type and quantity of the surfactant used in the formulation of microemulsions containing pellets has an important influence on their production and performance.Key words: disintegration and mechanical properties, FT-IR and H-bonding, microemulsion reconstitution, self-emulsifying pellets, surfactant HLB and oil/surfactant ratio  相似文献   

12.
Bioorganic reactions in microemulsions: the case of lipases   总被引:4,自引:0,他引:4  
Water-in-oil microemulsions, or reverse micelles, are being evaluated as a reaction medium for a variety of enzymatic reactions. These systems have many potential biotechnological applications. Important examples are the use of various lipase microemulsion systems for hydrolytic or synthetic reactions. This review illustrates the biotechnological applications of microemulsions as media for bioorganic reactions. The principal focus is on lipase catalyzed processes.  相似文献   

13.
Some new aspects of microbiology in water-in-oil microemulsions are investigated using Candida pseudotropicalis in a hexadecane solution containing Tween85/Span80 (each 5% wt:wt) as surfactant, and limited amount of water (up to 3%, vol:vol), Microemulsion solutions containing cells up to 10 mg fresh weight per milliliter can be prepared, which display a greater time stability and a much smaller light scattering than aqueous suspensions having the same cell concentration. This is ascribed to a lower aggregation tendency of the cells in the microemulsion environment. It is also shown that C. pseudotropicalis cells are able to grow (up to a factor of approximately 6-7 within a few days) in the microemulsion system containing nutrient medium in the aqueous microphase; but they are also able to grow at the expense of the hexadecane. This is proved with radioactive-labeled hexadecane by measuring the increase of radioactivity in the cells as well as the emission of (14)CO(2). The growth rate of the cells is then compared with the growth rate of cellular proteins during cell reproduction in the microemulsion system. Two regimes are observed: a first one, in which cells growth rate and protein growth rate proceed parallel to each other; and a second one (established after 0.5-1 day) characterized by depletion of proteins in the microemulsion system. The implications of these findings for cell metabolism in microemulsion and for possible biotechnological applications are discussed.  相似文献   

14.
Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.  相似文献   

15.
The results of formation, phase behaviour and physical properties of biological microemulsions prepared from saffola/AOT/hexylamine/water in presence of different additives, viz. cholesterol, crown ether, urea and brine, are presented. It has been found that the additives and temperature have striking effects; mono-, bi- and triphasic solutions interchanging proportions among themselves. The conduction of microemulsion at different [Water/AOT] ratios (w = 9,10,14,18,20,39 and 45) has shown conspicuous dependence on temperature with a significant degree of percolation, whereas the dependence of viscosity on temperature has shown normal declining trend with temperature. A maximum in viscosity with respect to its variation with amount of water has been observed. The Walden product (lambda eta) has evidenced noncompensation of ion transport by conduction with the viscosity of the medium. The activation energies evaluated for conduction (delta E*cond) and viscosity (delta E*vis) are systematic except at [Water/AOT] ratio, w = 20. The additives cholesterol, crown ether and their mixture have shown a decreasing effect on the delta E*cond for percolation, whereas delta E*vis has increased in their presence. The bicontinuous microemulsion has the prospect for use as liquid membrane.  相似文献   

16.
藻红蛋白在微乳液中的增溶溶解   总被引:4,自引:0,他引:4  
本文研究了藻红蛋白在油包水微乳液的紫外吸收和荧光光谱,结果表明,含藻红蛋白的阳离子表面活性剂的微乳液的光谱与其水溶液的光谱不同,说明藻红蛋白在这样的微环境中变性,与此相反,含藻红蛋白的阴离子表面活性剂的微乳液的光谱与其水溶液的相应光谱的特征峰相同,说明藻红蛋白在阴离子表面活性剂的微乳液中没有变性。本文进一步研究了含藻红蛋白的阴离子表面活性剂的微乳液在不同含水量时蛋白质的稳定性。并根据蛋白质的大小和  相似文献   

17.
Lipid microemulsions with various core and surface lipid compositions were prepared by co-sonication of cholesteryl esters, triolein (TO), egg phosphatidylcholine (egg PC), and cholesterol. The heterogeneous emulsion particle mixture was purified by gel filtration and particles with the size and general organization of low density lipoproteins were obtained. These lipid microemulsion particles were used for studies of the cellular metabolism of lipoprotein-derived cholesterol and cholesteryl esters as catalyzed by the enzyme acid sterol ester hydrolase (EC 3.1.1.13). The hydrolysis of cholesteryl oleate (CO) was more than twice and that of cholesteryl linoleate (CL) more than three times faster than the hydrolysis of cholesteryl stearate (CS) over the temperature range 25-39.6 degrees C. Both the synthesis and hydrolysis of cholesteryl esters were insensitive to the physical state of the microemulsion cores. The synthesis of cholesteryl esters by this enzyme was also insensitive to the ratios of cholesterol and egg PC in the microemulsion surface layers. Incorporation of triolein into the microemulsion cholesteryl ester core slightly increased the rate of cholesteryl ester synthesis. A decreasing fatty acyl chain length (C18:0 to C14:0) and an increasing degree of unsaturation (C18:0 to C18:2) enhanced the synthesis rate. It is suggested that the hydrolysis and synthesis of cholesteryl esters in microemulsions (and lipoproteins) take place only in the particle surface layer and that the rate of catalysis is directly dependent on the amount of substrate in this surface layer.  相似文献   

18.
Kinetic studies have shown that octyl decanoate synthesis by Chromobacterium viscosum (CV) lipase in sodium bis-2-(ethylhexyl) sulfosuccinate (AOT) water in oil (w/o) microemulsions occurs via the nonsequential (ping-pong) bi bi mechanism. There was evidence of single substrate inhibition by decanoic acid at high concentrations. Initial rate data yielded estimates for acid and alcohol Michaelis constants of ca. 10(-1) mol dm(-3) and a maximum rate under saturation conditions of ca. 10(-3) mol dm(-3) s(-1) for a lipase concentration of 0.36 mg cm(-3). CV lipase immobilized in AOT microemulsion-based organogels (MBGs) was also found to catalyze the synthesis of octyl decanoate according to the ping-pong bi bi mechanism. Reaction rates were similar in the free and immobilized systems under comparable conditions. Initial rates at saturating (but noninhibiting) substrate concentrations were first order with respect to CV lipase concentration in both w/o microemulsions and the MBG/oil systems. Gradients yielded an apparent k(cat) = 4.4 x 10(-4) mol g(-1) s(-1) in the case of w/o microemulsions, and 6.1 x 10(-4) mol g(-1) s(-1) for CV lipase immobilized in the MBGs. A third system comprising w/o microemulsions containing substrates and gelatin at concentrations comparable to those employed in the MBG formulations, provided a useful link between the conventional liquid microemulsion medium and the solid organogels. The nongelation of these intermediate systems stems from the early inclusion of substrate during a modified preparative protocol. The presence of substrate appears to prevent the development of a percolated microstructure that is thought to be a prerequisite for MBG formation. FT-NMR was employed as a semicontinuous in situ assay procedure. The apparent activity expressed by CV lipase in compositionally equivalent liquid and solid phase gelatin-containing systems was similar. An apparent activation energy of 24 +/- 2 kJ mol(-1) was determined by (1)H-NMR for esterification in gelatin-containing w/o microemulsions. This value agrees with previous determinations for CV lipase-catalyzed synthesis of octyl decanoate in "conventional" w/o microemulsions and MBG/oil systems. The similarities in lipase behavior are consistent with the claim, based largely on structural measurements, that the physico-chemical properties of the lipase-containing w/o microemulsion are to a large extent preserved on transformation to the daughter organogel. The close agreement of apparrent activation energies suggests that substrate mass transfer is not rate determining in the three studied systems. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54:416-427, 1997.  相似文献   

19.
The activity and the kinetic properties of horse liver alcohol dehydrogenase have been studied in water-in-oil microemulsions containing sodium dodecyl sulfate (SDS) or hexadecyl trimethylammonium bromide (CTAB), 1-butanol or 1-pentanol or 1-hexanol or t-butanol, water and cyclohexane alone or with octane. In the anionic microemulsions (i.e. containing sodium dodecyl sulfate), the enzyme quickly lost its activity, but was efficiently protected by the coenzyme and some adenine nucleotides. In the cationic microemulsions (i.e. containing hexadecyl trimethylammonium bromide), the enzyme activity was more stable and with higher alcohols was stable for at least 20 min. The Michaelis constant of NAD+ calculated with respect to the water content was nearly constant and higher than in water. The maximum velocity in anionic microemulsions depends on the water content whereas in cationic microemulsions, the maximum velocity did not show a clear dependence on the water content and was close to the maximum velocity found in water. The pH dependence of Km and Vmax in these microemulsions was similar to that observed in water. The kinetic data for a hydrophobic substrate, cinnamyl alcohol, showed that this alcohol partitions between the pseudo-phases and thus the apparent Michaelis constant and the concentration at which substrate-excess inhibition appeared were increased. The catalytic properties of the enzyme in microemulsions were illustrated by the preparative reduction of cinnamaldehyde with cofactor recycling. The rate determination of NAD+ reduction and of 1-butanol/cinnamaldehyde redox reaction showed that at low water content (2.8%), the NAD+ reduction rate was close to zero whereas the redox reaction rate was about half of the rate at higher water content. Probably at low water content the coenzyme binding-dissociation rates are reduced much more than the binding-dissociation rates of the substrates and the rates of the ternary complex interconversion. The cationic microemulsions seemed to be very favorable medium for enzyme activity, the tetraalkyl ammonium surfactant causing less denaturation than the anionic detergent dodecyl sulfate.  相似文献   

20.
Tenoxicam (TNX) is a non-steroidal anti-inflammatory drug (NSAID) used for the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, backache and pain. However, prolonged oral use of this drug is associated with gastrointestinal adverse events like peptic ulceration, thus necessitating its development as topical formulation that could obviate the adverse effects and improve patient compliance. The present study was aimed at development of microemulsion-based formulations of TNX for topical delivery at the affected site. The pseudoternary phase diagrams were developed and microemulsion formulations were prepared using Captex 300/oleic acid as oil, Tween 80 as surfactant and n-butanol/ethanol as co-surfactant. Optimized microemulsions were characterized for drug content, droplet size, viscosity, pH and zeta potential. The ex vivo permeation studies through Laca mice skin were performed using Franz diffusion cell assembly, and the permeation profile of the microemulsion formulation was compared with aqueous suspension of drug and drug incorporated in conventional cream. Microemulsion formulations of TNX showed significantly higher (p?<?0.001) mean cumulative percent permeation values in comparison to conventional cream and suspension of drug. In vivo anti-arthritic and anti-inflammatory activity of the developed TNX formulations was evaluated using various inflammatory models such as air pouch model, xylene-induced ear edema, cotton pellet granuloma and carrageenan-induced inflammation. Microemulsion formulations were found to be superior in controlling inflammation as compared to conventional topical dosage forms and showed efficacy equivalent to oral formulation. Results suggest that the developed microemulsion formulations may be used for effective topical delivery of TNX to treat various inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号