首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In contrast to the higher vertebrates the photoperiodic time measuring system in the male lizardAnolis carolinensis seems to rely on an hourglass timer which lacks endogenous rhythmicity. This timer appears to measure the absolute length of the light portion of light-dark (LD) cycles. The present study further characterized the nature of theAnolis photoperiodic timer and demonstrated: (1) The gonadal response is quite sensitive to photostimulation. Exposure to as few as three 16 h photoperiods (over a 3 week period) can maintain testicular function in summer anoles whereas exposure to as few as six 16 h photoperiods (over a 3 week period) can elicit maximal testicular development in the fall. (2) The photoperiodic timer does not have to be reset daily by a dark interruption. (3) The dark portion of LD cycles may be involved in a complex fashion in reversing a light-initiated reaction and (4) Comparisons of entrained circadian activity rhythms with testicular responses to various light cycles argue against the participation of a circadian clock in photoperiodic time measurement.Abbreviation CRPP circadian rhythm of photoperiodic photo-sensitivity  相似文献   

2.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

3.
The photosynthesis-deficient ZC mutant ofEuglena gracilis Klebs (strain Z) was cultured at 16°C on an aerated, magnetically stirred, mineral medium containing 0.1% ethanol (pH 7.0). Cell division could be entrained by a 12: 12 light: dark cycle (LD: 12, 12) or even by a one-pulse skeleton photoperiod (LD: 1,23) The rhythm free-ran in DD for at least 8 days with a circadian period (=25.5 h) in populations that had been previously entrained by LD. The freerunning rhythm could be phase-shifted by a single 1-h light pulse (3000 lx). The strong (Type 0) phase-response curve derived from the resetting effects of such signals given at different circadian times was similar to that for the photosynthetic wild-type strain. These results demonstrate that the presence of a functional chloroplast compartment is not necessary for the circadian clock to function inEuglena and suggest that phase resetting of the circadian clock by light occurs via a similar pathway in both photosynthetic and non-photosynthetic cell types.  相似文献   

4.
Summary The roles of the pineal organ and the eye in the control of circadian locomotor rhythmicity were studied in the pigeon (Columba livia). Neither pinealectomy nor blinding abolished the circadian rhythms in constant dim light conditions (LLdim). All the pinealectomized birds and the blinded birds entrained to light-dark (LD) cycles with no discernible anticipatory activity. However, the birds which had been both pinealectomized and blinded showed no circadian rhythms in prolonged LLdim. These birds entrained to LD cycles with anticipatory activity and showed residual rhythmicity for a while after transfer from LD cycles to LLdim. Continuous administration of melatonin induced suppression of the circadian rhythms and reduced total amount of locomotor activity in LLdim. These results suggest that not only the pineal organ but also the eye (perhaps the retina) is involved in the pigeon's circadian system.Abbreviations NAT N-acetyltransferase - LLdim constant dim light - cadian period - SCN suprachiasmatic nucleus - circadian activity time - LD light-dark  相似文献   

5.
A unicellular organism, Paramecium, exhibits circadian rhythm activities in many physiological phenomena, i.e., mating reactivity, photoaccumulation in Paramecium bursaria and mating type reversals in Paramecium multimicronucleatum. In this study, we used an image-processing system to analyze swimming activity in a population of Paramecium multimicronucleatum cultured axenically under 12 h-light/12 h-dark cycles (LD 1212). Swimming behavior was recorded both under LD 1212 and constant darkness and images tracing the tracks of Paramecium were produced every 4 min. Swimming activity was represented by the occupied area by the tracks relative to the total observed area. It is high during daytime and low at night and exhibits a freerunning rhythm in constant darkness. Furthermore, criteria for two major components of swimming behavior, straight and circle swimming, were established and analyzed. The results indicate that swimming behavior alters depending on the time of day: straight swimming increased during the day and circling was dominant around dusk both under LD 1212 and constant darkness.Abbreviations ZT Zeitgeber Time - LD 1212 12h- light/12h-dark cycles - TF transversing frequency  相似文献   

6.
The coupling mechanism between weakly coupled two optic lobe circadian pacemakers in the cricket Gryllus bimaculatus was investigated by recording the locomotor activity, under light-dark cycles with various lengths, after the optic nerve was unilaterally severed. The activity rhythm split into two components under the light cycles different from 24 h: one was readily entrained to the light cycle and the other only loosely entrained or freeran. Additional removal of the optic lobe on the intact side resulted in a loss of the entrained component and that on the blinded side caused the reverse effect, indicating that the entrained component was driven by the pacemaker on the intact side and the other by the one on the blinded side. The synchronization between the two components was achieved only in light cycles with a limited length between 23 and 25 h. Without this range, the desynchronization of the components occurred. In the split rhythm, the phase-dependent modulation of the period of freerunning component and the mutual suppression of locomotor activity during the subjective day phase were clearly observed. The suppression was also evident in the lights-on peak that was the masking effect of light. The light cycle with dim light significantly reduced the ratio of animals with the pacemaker coupling as well as the magnitude of the period modulation. These results suggest (1) that the mutual coupling is achieved only when the difference in the periods between the two pacemakers is within an allowable range, (2) that the photic information is also involved in the mechanism of mutual coupling, and (3) that the suppression of activity occurs at the regulatory center for locomotion.Abbreviations CT circadian time - DD constant darkness - LL constant light - LD light to dark cycle - T length of light to dark cycle - freerunning period  相似文献   

7.
Summary Removal of the pineal gland modifies the entrainment behavior of house sparrows. Abnormal entrainment occurs in pinealectomized sparrows exposed to skeleton photoperiods (light cycles composed of 2 pulses of light per 24-h cycle). This abnormal entrainment depends upon the state of the locomotor activity (rhythmic or arrhythmic) before exposure to the light cycle, and upon the interval between the 2 pulses of light which constitute the skeleton photoperiod. The conditions that produce abnormal entrainment in pinealectomized birds are strongly correlated with those that produce 2 stable phases of entrainment to skeleton photoperiods in normal birds (bistability phenomenon). These results suggest that after pinealectomy, there remains a population of oscillators whose combined output is reflected in the locomotor activity of individual sparrows.Abbreviations LD 12 12 light-dark cycle with 12 h of light and 12 h of dark per 24-h cycle - CT circadian time  相似文献   

8.
Summary Pinealectomy of the iguanid lizardSceloporus occidentalis freerunning in either continuous illumination or continuous darkness typically causes changes in the period of the activity rhythm as well as changes in the amount of daily activity (). Blinding also alters the period of the freerunning activity rhythm. Continuous long term administration of melatonin via subcutaneous capsules causes a significant lengthening of the period of the activity rhythm (as well as a decrease in ) of pinealectomized and/or blinded lizards showing that melatonin exerts its action at extrapineal and extraocular sites. However, the amount of lengthening induced by melatonin is significantly greater in pinealectomized lizards than in intact lizards. The results indicate that the pineal (and possibly the eyes) act as coupling devices or as the loci of circadian pacemakers within a multioscillator system. Melatonin may function as a chemical messenger between the pineal (or eyes) and the rest of the circadian system.  相似文献   

9.
Summary The circadian period of the freerunning activity rhythm in the cockroach is systematically altered by high frequency light-dark cycles (HF-LD) according to the ratio of light to dark within each cycle. With a standard 10 min cycle time, brief (e.g., 0.5 min) exposure to light each cycle causes the free-running period to shorten significantly in comparison to its steady-state value in constant darkness. As the ratio of light to dark in HF-LD is increased, the period of the rhythm is progressively lengthened. These findings are discussed in terms of the general proposition that light, applied throughout the circadian cycle, predictably modifies periodicity according to the asymmetrical shape of the circadian phase response curve.Abbreviations LD light-dark cycles in which cycle length is in hours - HF-LD light-dark cycles in which cycle length is in min; period of the activity rhythm; change in period of the activity rhythm - PRC phase response curve - LL constant light  相似文献   

10.
The circadian locomotor rhythm of the cricketGryllus bimaculatus is primarily generated by a pair of optic lobe circadian pacemakers. The two pacemakers mutually interact to keep a stable temporal structure in the locomotor activity. The interaction has two principal effects on the activity rhythm, i.e., phase-dependent modulation of the freerunning period and phase-dependent suppression of activity driven by the partner pacemaker. Both effects were mediated by neural pathways, since they were immediately abolished after the optic stalk connecting the optic medulla to the lobula was unilaterally severed. The neural pathways were examined by recording locomotor activity, under a 13 h light to 13 h dark cycle, after the optic nerves were unilaterally severed and the contralateral optic stalk was partially destroyed near the lobula. When the dorsal half of the optic stalk was severed, locomotor rhythm mostly split into two components: one was readily entrained to the given light-dark cycle and the other freeran with a marked fluctuation in freerunning period, where the period of the freerunning component was lengthened or shortened when the onset of the entrained component occurred during its subjective night or day, respectively. The phase-dependent modulation of activity was also observed in both components. However, severance of the ventral half of the optic stalk resulted in appearance only of the freerunning component; neither the phase-dependent modulation of its freerunning period nor the change in activity level was observed. These results suggest that neurons driving the mutual interaction and the overt activity rhythm run in the ventral half of the proximal optic stalk that includes axons of large medulla neurons projecting to the cerebral lobe and the contralateral medulla.Abbreviations LD light dark cycle - freerunning period  相似文献   

11.
Summary A marked interspecific variability in the role played by the pineal and the retinae characterizes the circadian system of lizards. I examined the role played by these structures in a new model species, the ruin lizard, Podarcis sicula. In constant temperature and darkness pinealectomy as well as bilateral removal of the retinae produced significant changes (both lengthening and shortening) in the freerunning period of locomotor rhythms. Circadian activity time was also affected by pinealectomy. Circadian locomotor rhythmicity persisted in all cases even when both operations were combined in the same individuals. This demonstrates in Podarcis sicula the existence of an oscillatory system outside the pineal and the retinae which can drive locomotor rhythms. The period changes recorded after pinealectomy as well as after bilateral removal of the retinae specifically suggest that both the pineal and the retinae play a modulating role on circadian oscillators located elsewhere in the system, with the final effect of stabilizing the overt rhythms.Abbreviations DD constant darkness - LL constant light - PIN-X pinealectomy - RET-X bilateral removal of the retinae - SHAM sham pinealectomy - circadian activity time - freerunning circadian period  相似文献   

12.
Summary Locomotor activity of the river lamprey, Lampetra japonica, was investigated under a light-dark (LD 1212) cycle and under continuous dark conditions. Intact lampreys were entrained to the light:dark cycle. They were active mainly in the early half of the dark period and inactive in light period. The light:dark entrainment continued in 72.7% of lampreys after the removal of bilateral eyes, but additional pinealectomy made the entrainment disappear in all lampreys. When lampreys were pinealectomized with their eyes intact, light: dark entrainment was abolished in most cases. The results indicate that the pineal organ of the lamprey is a photoreceptive organ responsible for synchronizing locomotor activity to LD cycle. Under continuous dark conditions, the locomotor activity began to free-run with a period of 21.3 ± 0.9 h (mean ± SD, n = 53). This circadian rhythmicity was not affected by the removal of lateral eyes but was abolished by pinealectomy. The pineal organ appears to function as an oscillator, or as one of the oscillators, for the circadian locomotor rhythm of lampreys.Abbreviations DD continuous dark - LD light:dark  相似文献   

13.
Summary The time measuring system ofDrosophila littoralis strains originating between 40–70° N was found to be highly variable and latitude dependent. The critical daylength for photoperiodic adult diapause varied from 12 h or no diapause response in the south to 20 h in north. The median timing of pupal eclosion rhythm varied correspondingly from 21 h to 12 h from lights off in LD 321, and the period of free-running rhythm of eclosion from 24 h to 19 h. The phase of the free-running rhythm was also variable, and correlated with the phase of the entrained rhythm. Latitudinal variation in the entrained rhythm of eclosion and in diapause is adaptive, leading to eclosion early in the morning and to overwintering at the adult stage. In some strains with a late phase of eclosion, strong transient cycles were seen following the transition from LL to DD. A total damping of the free-running eclosion rhythm within 2–7 days was common to all strains. This damping was more pronounced in the northern strains. The phase and period of eclosion rhythms were statistically independent. Diapause was not correlated with any parameters of the eclosion rhythm in the analysis. Diapause may still be influenced by the period of the eclosion rhythm, even though its minor contribution may be masked by a more variable, eclosion rhythm independent system in the determination of diapause.Abbreviations, symbols and terms LD Light/dark; as in LD 321 meaning a cycle of 3 h light21 h darkness - LL Continuous light - DD Continuous darkness - T Period of a Zeitgeber cycle - Natural period of eclosion rhythm in constant conditions - EL Phase of the free-running rhythm of eclosion - A Amplitude of the free-running rhythm of eclosion; possible range is from 4.17% (no rhythmicity) to 20% (the daily eclosion peaks 2–6 within 5 h each) - P Persistence of the free-running rhythm of eclosion; the number of daily eclosion peaks where the mean for five highest hourly percentages still exceed 6% - A phase shift, expressed in h; a re-setting of a rhythm; either as an advance shift (i.e. earlier= +), or as a delay shift (i.e. later = –) - PRC Phase-response curve - LD Phase of entrained rhythm of eclosion; e.g. LD 321 is the median hour of eclosion peak from lights off at LD 321 - SD ecl Amplitude of the entrained rhythm of eclosion; the smaller SDecl the higher the amplitude - PPRC Photoperiodic response curve; proportion of females in diapause displayed as a function of daylength - CDL Critical photoperiod; the photoperiod in the 24 h LD cycle at which 50% of the population studied diapauses - SD diap Accuracy of diapause response of a strain; the smaller the SDdiap the more accurate the response - Cdl The main locus controlling CDL inD. littoralis  相似文献   

14.
Summary Pinealectomy of White-throated Sparrows (Zonotrichia albicollis) free-running under constant conditions in dim light abolishes the circadian rhythm of nocturnal spring and fall migratory restlessness (Zugunruhe) as well as the rhythm of summer daytime locomotor activity (Pigs. 1 and 2). Rhythmicity persists in sham-operated birds. Pinealectomized birds are synchronized by a light cycle but their activity rhythm decays to arrhythmicity when they are released from entrainment into constant dim light. The pineal of the white-throat seems essential for the expression of circadian rhythms of both daytime activity and migratory restlessness. These findings support the hypothesis that the avian pineal is fundamentally involved in circadian organization.  相似文献   

15.
Summary Oxygen consumption was measured with an automatic continuously recording electrolysis system in toads acclimated at 15° C and under photoperiods of LD 816, 1212, 168, 66, 231 and LL and DD. All groups exposed to LD had pronounced significant daily rhythms with a trough near the onset of the photophase and a peak at the beginning of the scotophase (Figs. 1–3, 9, 10), while no rhythms were detected in animals exposed under free-running conditions of constant light (Figs. 6–7) or constant darkness (Fig. 8), even on the first day under LL or DD. These rhythms are thus shown to be non-circadian, since they do not persist in freerunning conditions of up to 45 days. Some preliminary evidence from studies on locomotor activity (Figs. 12, 13) indicates that the daily rhythm in metabolic rate may be independent of the locomotor activity cycle. The difference in the rate of oxygen consumption during peak and low hours of each daily cycle is defined as the daily routine metabolic scope, which may be more useful in ecological studies of animal energetics than the difference between the minimum and a forced maximum metabolic rate. No correlations were found between daily changes in atmospheric pressure and cycles of oxygen consumption.This work was supported by a grant from the National Science Foundation (GB-3574) and a University of Rhode Island Research Committee Grant-in-aid. We are grateful to Robert Cubert for aid in designing and constructing the electrolysis system and for assistance with computer programs.  相似文献   

16.
Summary The eye of the frilled sea hare,Bursatella leachi plei, expresses a circadian rhythm in the frequency of spontaneously occurring optic nerve impulses. The rhythm will free-run for at least 3 cycles in vitro (Fig. 2) and can be entrained by light cycles provided in vivo (Fig. 4 A). While bothBursatella andAplysia eyes contain circadian pacemakers the two rhythms differ in several respects: (1) the peak impulse frequency forBursatella eyes is only 96/h (±36 SD) compared with 247/h (±61 SD) forAplysia. (2) The ocular waveform of theBursatella rhythm exhibits a steep rise and fall from peak frequencies and lacks the delayed falling phase which creates a shoulder on the ocular waveform inAplysia (Fig. 2). (3) The in vitro free-running period of theBursatella ocular rhythm is 21.2 h (±0.6 SD) compared with 24.3 h (±0.9 SD) for theAplysia rhythm (Fig. 2). (4) The steady state phase angle for entrainment differs withBursatella eyes showing a median activity peak at +3 Z.T. compared with a medianAplysia peak at –1 Z.T. (Fig. 4).We also investigated the locomotor rhythm.Bursatella were found to be predominantly diurnal when exposed to LD, 1212 (Fig. 5A) and to exhibit anticipatory locomotor activity when maintained on LD), 915 (Fig. 6). The eyes appear to play a minor role, if any, in timing the locomotor rhythm. EyelessBursatella remained diurnal on LD, 915 and most animals continued to exhibit anticipatory behavior (Fig. 6). These results suggest that theBursatella eye plays a less prominent role than theAplysia eye in controlling locomotor behavior.Abbreviations DD constant darkness - LD 1212 24 h light cycles 12 h light, 12 h dark - EST Eastern Standard Time - Z.T. Zeitgeber Time We would like to thank L. Baird, W. Kilmartin and S. Wallace for help with animal maintenance, data presentation and photography. We also thank T. Breeden for our computer programs. This work was supported by NIH grant NS-15264 to G. Block.  相似文献   

17.
Summary Pineal and ocular melatonin was assessed, over 24 h periods, in male lizards (Anolis carolinensis) entrained to 24 h light-dark (LD) cycles and a constant 32 C, and in lizards entrained to both 24 h LD cycles and 24 h temperature cycles (32 C/20 C). At a constant temperature, the duration of the photoperiod has a profound effect on the duration, amplitude, and phase of the pineal melatonin rhythm (Fig. 1). The pineal melatonin rhythm under cyclic temperature peaks during the cool (20 C) phase of the cycle regardless of whether or not the cool phase occurs during the light or dark phase of a LD 1212 cycle (Fig. 3). Under a temperature cycle and constant dim illumination, a pineal melatonin rhythm is observed which peaks during the cool phase of the temperature cycle, but the amplitude of the rhythm is depressed relative to that observed under LD (Fig. 2). Illumination up to 2 h in duration does not suppress the nocturnal melatonin peak in theAnolis pineal (Fig. 4). No melatonin rhythm was observed in the eyes ofAnolis under either 24 h LD cycles and a constant temperature (Fig. 1), or under simultaneous light and temperature cycles (Fig. 3). Ocular melatonin content was, in all cases, either very low or non-detectable.Abbreviations HIOMT hydroxyindole-O-methyltransferase - NAT N-acetyltransferase  相似文献   

18.
Summary Desert iguanas, Dipsosaurus dorsalis, displaying freerunning circadian locomotor rhythms in conditions of constant darkness and temperature received electrolytic lesions to the hypothalamus. The locomotor activity of those lizards (N = 9) which sustained 80% or more damage to the suprachiasmatic nucleus (SCN) became arrhythmic whereas all animals that sustained less than 35% damage to the SCN remained rhythmic, even though they sustained significant damage to nearby regions of the hypothalamus and preoptic area. These results suggest strongly that the SCN plays a role in the regulation of circadian rhythms in the desert iguana. Taken together with other evidence, they support the view that this structure is homologous to the mammalian SCN, which acts as a pacemaker in the circadian system.Abbreviations SCN suprachiasmatic nucleus - freerunning circadian period  相似文献   

19.
Japanese quail exhibit a robust circadian rhythm in body temperature. This rhythm is readily entrainable by 24 h light-dark (LD) cycles and persists under constant conditions. Because both the pineal organ and the eyes have been implicated as major components of the circadian system of birds, the role of these organs in generating the rhythm of body temperature was investigated. Pinealectomy, when performed alone, had little effect on the body temperature rhythm of quail either under LD or under constant darkness (DD). Most birds subjected to optic nerve section alone remained rhythmic in DD although the robustness of the rhythm was decreased, and 25% became arrhythmic. Birds subjected to both pinealectomy and optic nerve section behaved similarly to birds subjected to optic nerve section alone. However, complete eye removal, when performed alone or in combination with pinealectomy, caused all birds to become arrhythmic in DD. The data support the hypothesis that the eyes are the loci of circadian pacemakers in quail that act, via both neural and hormonal outputs, to preserve the integrity of (self-sustaining or damped) circadian oscillators located elsewhere.  相似文献   

20.
Synopsis Freerunning circadian rhythms of locomotor activity in individual longnose dace sampled from a population at 41°N latitude were recorded under constant darkness throughout the year. There was an annual cycle in the length of the circadian period, with maximum and minimum lengths of mean period of 23.6 and 21.6 h recorded during summer (June) and winter (December), respectively. These annual changes in period length may have resulted from seasonal changes in entrainment by natural light-dark cycles and their after-effects on endogenous circadian rhythms. The possibility of an endogenous circannual rhythm was also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号