首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study was to test the hypothesis that the relative amounts of the cardiac myosin heavy chain (MHC) isoforms MHC-alpha and MHC-beta change during development and transition to heart failure in the human myocardium. The relative amounts of MHC-alpha and MHC-beta in ventricular and atrial samples from fetal (gestational days 47--110) and nonfailing and failing adult hearts were determined. The majority of the fetal right and left ventricular samples contained small relative amounts of MHC-alpha (mean < 5% of total MHC). There was a small significant decrease in the level of MHC-alpha in the ventricles between 7 and 12 wk of gestation. Fetal atria expressed predominantly MHC-alpha (mean > 95%), with MHC-beta being detected in most samples. The majority of adult nonfailing right and left ventricular samples had detectable levels of MHC-alpha ranging from 1 to 10%. Failing right and left ventricles expressed a significantly lower level of MHC-alpha. MHC-alpha comprised approximately 90% of the total MHC in adult nonfailing left atria, whereas the relative amount of MHC-alpha in the left atria of individuals with dilated or ischemic cardiomyopathy was approximately 50%. The differences in MHC isoform composition between fetal and nonfailing adult atria and between fetal and nonfailing adult ventricles were not statistically significant. We concluded that the MHC isoform compositions of fetal human atria are the same as those of nonfailing adult atria and that the ventricular MHC isoform composition is different between adult nonfailing and failing hearts. Furthermore, the marked alteration in atrial MHC isoform composition, associated with cardiomyopathy, does not represent a regression to a pattern that is uniquely characteristic of the fetal stage.  相似文献   

2.
Fang P  Zang WJ  Yu XJ  Sun Q  Zang YM  Lu J 《生理学报》2002,54(4):311-316
实验采用标准玻璃微电极细胞内记录技术记录心肌细胞动作电位(action potential,AP)、肌力换能器记录心肌收缩力(force contraction,Fc),研究乙酰胆碱(acetylcholine,ACh)对离体豚鼠心房肌、心室肌的作用。结果表明,10μmol/L ACh可缩短心房肌、心室肌动作电位的时程(action potential duration,APD)。心房肌APD在给药前后分别为208.57±36.05ms及101.78±14.41ms(n=6,P<0.01),心室肌APD在给药前后分别为286.73±36.11ms及265.16±30.06 ms(n=6,P<0.01)。心房肌动作电位的幅度(action potential amplitude,APA)也降低,给药前后分别为88.00±9.35 mV及62.62±20.50 mV(n=6,P<0.01),而心室肌APA无明显变化。ACh还降低心房肌、心室肌的收缩力,心房肌、心室肌Fc的抑制率分别为100%(n=6,P<0.01)和37.57±2.58%(n=6,P<0.01)。ACh对心房肌、心室肌APD和Fc的抑制作用在一定范围内(1nmol/L~100μmol/L)随ACh浓度的增高而增强。用Scott法求出ACh对心房肌、心室肌APD缩短作用的KD值,分别为0.275和0.575μmol/L,对Fc抑制作用的KD值分别为0.135和0.676μmol/L。各浓度下ACh对心房肌效应与心室肌效应作组间t检验,从10nmol/L到0.1mmol/L均有显著的统计学差异。此外,10μmol/L阿托品及20mmol/L  相似文献   

3.
In human heart failure, an increase in frequency of stimulation is followed by a reduced force of contractionin vivo andin vitro. The present study aimed to investigate whether a different origin of the myocardial sample or pretreatment with the cardioprotective agent 2,3-butanedione-monoxime (BDM) influences the force-frequency-relationship in electrically driven muscle strips taken from failing and nonfailing human myocardium. With as well as without pretreatment with BDM, the altered force-frequency-relationship in failing compared to nonfailing human ventricular myocardium can be observed. The effectiveness and the potency to increase force of contraction following an increase in frequency of stimulation was significantly higher in atrial than in ventricular myocardium in nonfailing and failing tissue. The different observations in atrial and ventricular myocardium provide evidence for functionally relevant differences in the electromechanical coupling between the human atrial and ventricular myocardium.  相似文献   

4.
Physiologically, human atrial and ventricular myocardium are coupled by an identical beating rate and rhythm. However, contractile behavior in atrial myocardium may be different from that in ventricular myocardium, and little is known about intracellular Ca(2+) handling in human atrium under physiological conditions. We used rapid cooling contractures (RCCs) to assess sarcoplasmic reticulum (SR) Ca(2+) content and the photoprotein aequorin to assess intracellular Ca(2+) transients in atrial and ventricular muscle strips isolated from nonfailing human hearts. In atrial myocardium (n = 19), isometric twitch force frequency dependently (0. 25-3 Hz) increased by 78 +/- 25% (at 3 Hz; P < 0.05). In parallel, aequorin light signals increased by 111 +/- 57% (P < 0.05) and RCC amplitudes by 49 +/- 13% (P < 0.05). Similar results were obtained in ventricular myocardium (n = 13). SR Ca(2+) uptake (relative to Na(+)/Ca(2+) exchange) frequency dependently increased in atrial and ventricular myocardium (P < 0.05). With increasing rest intervals (1-240 s), atrial myocardium (n = 7) exhibited a parallel decrease in postrest twitch force (at 240 s by 68 +/- 5%, P < 0.05) and RCCs (by 49 +/- 10%, P < 0.05). In contrast, postrest twitch force and RCCs significantly increased in ventricular myocardium (n = 6). We conclude that in human atrial and ventricular myocardium the positive force-frequency relation results from increased SR Ca(2+) turnover. In contrast, rest intervals in atrial myocardium are associated with depressed contractility and intracellular Ca(2+) handling, which may be due to rest-dependent SR Ca(2+) loss (Ca(2+) leak) and subsequent Ca(2+) extrusion via Na(+)/Ca(2+) exchange. Therefore, the influence of rate and rhythm on mechanical performance is not uniform in atrial and ventricular myocardium.  相似文献   

5.
Endothelin is a positive inotropic agent in human and rat heart in vitro   总被引:10,自引:0,他引:10  
We have investigated the response to endothelin of isolated atrial and ventricular trabeculae from failing human hearts obtained at transplant. Results indicate that endothelin exerts a significant positive inotropic effect on human atrial and ventricular tissue, with increases in developed tension of 74.6 +/- 14.1% (+/- SEM) and 9.9 +/- 4.0%, respectively. Further studies on rat cardiac muscle demonstrate that the greater inotropic effect on atrial than ventricular muscle is also exhibited by the rat heart in vitro, with 39.9 +/- 10.7% and 17.1 +/- 5.9% increases in developed tension for atria and papillary muscle, respectively. Studies in rat atria also provide no evidence for an effect of endothelin on the frequency of spontaneous contractions. These results suggest that the potential exists for regulation of cardiac function in humans and rats by endothelial-derived factors such as endothelin, possibly via augmentation of atrial systole.  相似文献   

6.
Dose-dependent effects of noradrenaline (10-7-10-6M), acetylcholine (10-8-3x10-6M) and stimulation rate (0.2-2.0 Hz) were obtained in experiments on myocardium preparations of the right and left atria and ventricles in rat. Three types of topological differences of the rat myocardium reactivity were observed: between the atria and ventricles (A/V), between the right and left atria and ventricles (R/L), between the right atrium (RA) and other cardiac chambers. A/V differences were most pronounced in the reactivity to acetylcholine (the atria were more reactive), the highest R/L differences were observed in the reactivity to noradrenaline (the myocardium of the right chambers was more reactive). RA reactivity greatly exceeded reactivity of other myocardial preparations to all three test influences. Topological peculiarities of chrono-inotropism permit supposing, that inotropic effects of rate changes in vivo are able to compensate, to some extent, the regional nonuniformity of cholin- and adrenergic regulatory inotropic effects.  相似文献   

7.
肾上腺髓质素对豚鼠心室肌细胞L-型钙通道的调制   总被引:1,自引:0,他引:1  
Du YM  Tang M  Liu CJ  Luo HY  Hu XW 《生理学报》2002,54(6):479-484
应用全细胞膜片钳技术研究了肾上腺髓质素 (ADM )对豚鼠心室肌细胞L 型钙电流 (ICa ,L)的影响及其信号传导机制。结果发现 :ADM ( 1~ 10 0nmol/L)浓度依赖性抑制ICa,L(P <0 0 5 ) ,并可被ADM特异受体阻断剂ADM2 2 52 ( 10 0nmol/L)完全阻断。用蛋白激酶A特异拮抗剂H 89( 10 μmol/L)预处理 ,对ADM抑制ICa ,L的作用无影响。但用蛋白激酶C (PKC)特异性拮抗剂PKC19 36 预处理 ,可完全阻断ADM的抑制效应 ;而PKC特异性激动剂PMA则可以模仿ADM的抑制效应 (P <0 0 5 )。上述结果提示 :ADM作用于特异性ADM受体可浓度依赖性地抑制豚鼠心室肌细胞ICa ,L,而此作用可能是PKC介导的。  相似文献   

8.
The progression of hypertension to cardiac failure involves systemic changes that may ultimately affect contractility throughout the heart. Spontaneous hypertensive heart failure (SHHF) rats have depressed left ventricular (LV) function, but right ventricular (RV) dysfunction is less well characterized. Ultrathin (87 +/- 5 mircom) trabeculae were isolated from end-stage failing SHHF rats and from age-matched controls. Under near-physiological conditions (1 mM Ca(2+), 37 degrees C, 4 Hz), developed force (in mN/mm(2)) was not significantly different in SHHF LV and RV trabeculae and those of controls. SHHF LV preparations displayed a negative force-frequency behavior (40 +/- 7 vs. 23 +/- 4 mN/mm(2), 2 vs. 7 Hz); this relationship was positive in SHHF RV preparations (27 +/- 5 vs. 40 +/- 6 mN/mm(2)) and controls (32 +/- 6 vs. 44 +/- 9 mN/mm(2)). The response to isoproterenol (10(-6) M, 4 Hz) was depressed in SHHF LV preparations. The inotropic response to hypothermia was lost in SHHF LV trabeculae but preserved in SHHF RV trabeculae. Intracellular calcium measurements revealed impaired calcium handling at higher frequencies in LV preparations. We conclude that in end-stage failing SHHF rats, RV function is only marginally affected, whereas a severe contractile dysfunction of LV myocardium is present.  相似文献   

9.
The purpose of the present study was to compare protein profiling of atria and ventricles in children operated for congenital heart disease. Tissue samples were obtained during surgery from patients with normoxemic (ventricular and atrial septal defects) and hypoxemic (tetralogy of Fallot) diseases. Protein fractions were isolated by stepwise extraction from both fight ventricular and atrial musculature. The concentration of total atrial protein in the normoxemic patients exceeded the ventricular value (110±2.1 vs 99.9±4.0mg.g–1 wet weight, respectively); in the hypoxemic group this atrio-ventricular difference disappeared. The concentration of contractile proteins in all cardiac samples was significantly higher in the ventricles as compared with atria, while the concentration of collagenous proteins was significantly higher in the atria (due to a higher amount of the insoluble collagenous fraction). The concentration of sarcoplasmic proteins (containing predominantly enzyme systems for aerobic and anaerobic substrate utilization), however did not differ between ventricles and atria. Furthermore, ventricular contractile fractions obtained from both normoxemic and hypoxemic patients were contaminated with the myosin light chain of atrial origin. Soluble collagenous fractions (containing newly synthesized collagenous proteins, predominantly collagen I and III), derived from all ventricular samples, were contaminated by low molecular weight fragments (mol. weight 29–35 kDa). The proportion of the soluble collagenous fraction was significantly higher in atrial but not in ventricular myocardium of hypoxemic children as compared with the normoxemic group. It seems, therefore, that lower oxygen saturation affects the svnthesis of collagen preferentially in atrial tissue.  相似文献   

10.
The inotropic and toxic effects of cardiac steroids are thought to result from Na(+)-K(+)-ATPase inhibition, with elevated intracellular Na(+)(Na)causing increased intracellular Ca(2+)(Ca) via Na-Ca exchange. We studied the effects of ouabain on cat ventricular myocytes in Na(+)-free conditions where the exchanger is inhibited. Cell shortening and Ca transients (with fluo 4-AM fluorescence) were measured under voltage clamp during exposure to Na(+)-free solutions [LiCl or N-methyl-D-glucamine (NMDG) replacement]. Ouabain enhanced contractility by 121 +/- 55% at 1 micromol/l (n = 11) and 476 +/- 159% at 3 micromol/l (n = 8) (means +/- SE). Ca transient amplitude was also increased. The inotropic effects of ouabain were retained even after pretreatment with saxitoxin (5 micromol/l) or changing the holding potential to -40 mV (to inactivate Na(+) current). Similar results were obtained with both Li(+) and NMDG replacement and in the absence of external K(+), indicating that ouabain produced positive inotropy in the absence of functional Na-Ca exchange and Na(+)-K(+)-ATPase activity. In contrast, ouabain had no inotropic response in rat ventricular myocytes (10-100 micromol/l). Finally, ouabain reversibly increased Ca(2+) overload toxicity by accelerating the rate of spontaneous aftercontractions (n = 13). These results suggest that the cellular effects of ouabain on the heart may include actions independent of Na(+)-K(+)-ATPase inhibition, Na-Ca exchange, and changes in Na.  相似文献   

11.
KCNE2 functions as an auxiliary subunit in voltage-gated K and HCN channels in the heart. Genetic variations in KCNE2 have been linked to long QT syndrome. The underlying mechanisms are not entirely clear. One of the issues is whether KCNE2 protein is expressed in ventricles. We use adenovirus-mediated genetic manipulations of adult cardiac myocytes to validate two antibodies (termed Ab1 and Ab2) for their ability to detect native KCNE2 in the heart. Ab1 faithfully detects native KCNE2 proteins in spontaneously hypertensive rat and guinea pig hearts. In both cases, KCNE2 protein is more abundant in ventricles than in atria. In both ventricular and atrial myocytes, KCNE2 protein is preferentially distributed on the cell surface. Ab1 can detect a prominent KCNE2 band in human ventricular muscle from nonfailing hearts. The band intensity is much fainter in atria and in failing ventricles. Ab2 specifically detects S98 phosphorylated KCNE2. Through exploring the functional significance of S98 phosphorylation, we uncover a novel mechanism by which KCNE2 modulates the human ether-a-go-go related gene (hERG) current amplitude: by accelerating hERG protein degradation and thus reducing the hERG protein level on the cell surface. S98 phosphorylation appears to be required for this modulation, so that S98 dephosphorylation leads to an increase in hERG/rapid delayed rectifier current amplitude. Our data confirm that KCNE2 protein is expressed in the ventricles of human and animal models. Furthermore, KCNE2 can modulate its partner channel function not only by altering channel conductance and/or gating kinetics, but also by affecting protein stability.  相似文献   

12.
Myosin heavy chain (MHC) isoforms are principal determinants of work capacity in mammalian ventricular myocardium. The ventricles of large mammals including humans normally express ~10% α-MHC on a predominantly β-MHC background, while in failing human ventricles α-MHC is virtually eliminated, suggesting that low-level α-MHC expression in normal myocardium can accelerate the kinetics of contraction and augment systolic function. To test this hypothesis in a model similar to human myocardium we determined composite rate constants of cross-bridge attachment (f(app)) and detachment (g(app)) in porcine myocardium expressing either 100% α-MHC or 100% β-MHC in order to predict the MHC isoform-specific effect on twitch kinetics. Right atrial (~100% α-MHC) and left ventricular (~100% β-MHC) tissue was used to measure myosin ATPase activity, isometric force, and the rate constant of force redevelopment (k(tr)) in solutions of varying Ca(2+) concentration. The rate of ATP utilization and k(tr) were approximately ninefold higher in atrial compared with ventricular myocardium, while tension cost was approximately eightfold greater in atrial myocardium. From these values, we calculated f(app) to be ~10-fold higher in α- compared with β-MHC, while g(app) was 8-fold higher in α-MHC. Mathematical modeling of an isometric twitch using these rate constants predicts that the expression of 10% α-MHC increases the maximal rate of rise of force (dF/dt(max)) by 92% compared with 0% α-MHC. These results suggest that low-level expression of α-MHC significantly accelerates myocardial twitch kinetics, thereby enhancing systolic function in large mammalian myocardium.  相似文献   

13.
As representatives of the vertebrate class of chondrichthyes the plagostomian species Squalus acanthias, Scyliorhinus canicula and Raja clavata as well as the holocephalan species Chimaera monstrosa were investigated for the presence of cardiac hormones of the atrial natriuretic polypeptide/cardiodilatin- (ANP/CDD-) family. ANP/CDD-immunoreactive cells were detected in the atria and the ventricles of all species studied. While these cells failed to react with antisera raised against the N-terminus of CDD-126 (= gamma-ANP) they reacted with all antisera directed against sequences of the C-terminus of CDD-126 (CDD 99-126) which is identical to alpha-ANP. The ANP/CDD-immunoreactive cells were found in high numbers in all regions of the atria and in moderate density also in the ventricles. In correspondence, in the electron microscope, myoendocrine cells which were characterized by dense-cored secretory granules were identified in the atrial and ventricular myocardium. With the use of the protein A-gold technique, ANP/CDD-immunoreactivity was determined within the secretory granules. Furthermore, in the bioassay, prepurified extracts of the atria and the ventricles of Scyliorhinus and Chimaera exerted dose-dependent relaxations of the pre-contracted mammalian (rabbit) aorta. In both cases the atrial extracts proved to be more potent than the ventricular extracts. The present findings indicate that myoendocrine cells occur in the atria and ventricles of chondrichthyes and that these cells contain homologous cardiac hormones of the ANP/CDD-family in their secretory granules. The results are compared with those obtained earlier for the other vertebrate classes and their phylogenetic and functional significance is discussed.  相似文献   

14.
Endothelin (ET)-1 is a potent vasoconstrictor peptide produced in the myocardium that can exert important effects on cardiac myocyte growth and phenotype; cardiac natriuretic peptides (ANP and BNP) are known to act as physiological antagonists of ET-1. In this study a comparative determination of ET-1 receptors and of the local productions of ET-1 and of ANP and BNP was made in different sites of failing and nonfailing hearts. Tissue from right and left atrium, right and left ventricle and interventricular septum from seven adult heart transplant recipients with end-stage idiopathic dilated cardiomyopathy (functional class III and IV, with ejection fraction < 35%) and from four postmortem subjects without cardiac complications was analyzed. In failing hearts we observed a tendency to increase of density of binding sites, most evident in left ventricle (62.6+/-22.6 fmol/mg protein vs. 29.0+/-3.3, mean +/- SEM, p = ns). A prevalence of ET-A subclass, observed in all samples, resulted more pronounced in failing hearts where this increase, found in all the cardiac regions, was more evident in left ventricle (p = 0.0007 vs nonfailing hearts). The local concentrations of ET-1, ANP and BNP resulted significantly increased in failing hearts with respect to controls in all sides of the heart. In failing hearts we have observed a tendency to increase in endothelin receptor density mainly due to a significant upregulation of ET-A subtype and a parallel increase of the tissue levels of ANP, BNP and ET-1 indicating an activation of these systems in heart failure.  相似文献   

15.
Temperature strongly affects oxygen solubility in water, oxygen convection in the blood and locomotor activity of the fish. Since oxygen supply and demand are temperature dependent, it was hypothesized that the purinergic control of the heart, one of the most important mediators in oxygen-limited conditions, might also show temperature dependence. Therefore, the present study examines the effects of adenosine (Ado), a purinergic agonist, on the contractile and electrical activity of the thermally acclimated trout ( Oncorhynchus mykiss Walbaum) heart. The fish were acclimated to either 4 degrees C or 17 degrees C and the experiments were conducted at the acclimation temperatures of the animals. In spontaneously beating hearts, Ado had a negative chronotropic and a positive inotropic effect in warm-acclimated rainbow trout while no response was detected in cold-acclimated trout. In paced atrial and ventricular preparations, Ado had a negative inotropic effect in both warm- and cold-acclimated fish, and the response was strongest in the atria of warm-acclimated trout. Ado shortened the duration of contraction 12-14% in atrial preparations but had no effect in ventricular muscle. Ado (10(-4) mol l(-1)) increased the density of the inwardly rectifying K(+) current from -3.5+/-0.6 pA pF(-1) to -8.4+/-1.4 pA pF(-1) (at -120 mV) in atrial myocytes of warm-acclimated trout but was without effect in atrial myocytes of cold-acclimated trout (-2.4+/-0.8 pA pF(-1) vs. -2.1+/-0.9 pA pF(-1)). Ado had no effect on K(+) currents of ventricular cells in either acclimation group. These results indicate that the effects of Ado on cardiac contractility and electrical activity are stronger in warm-acclimated than in cold-acclimated trout when measured at the physiological body temperatures of the fish. The balance between oxygen demand and supply of the heart might be better in the cold where more environmental oxygen is available and the power of the muscles is weaker thereby reducing the need for the purinergic control of the heart. Temperature-dependence of Ado response in the trout heart warrants that temperature should be taken into consideration when the purinergic system of the ectotherms is studied.  相似文献   

16.
Recently, the concept of an atrial endocrine system has expanded to that of a cardiac endocrine system. In support of this expanded view, the cardiac ventricles have been demonstrated to be a source of the atrial hormone (atriopeptin). Markedly enhanced ventricular expression of atriopeptin has been shown to be associated with cardiac hypertrophy. In this study, we measured the levels of atriopeptin in atrial and extra-atrial tissues of the BIO 14.6 hamster, a genetic model of cardiomyopathy and congestive heart failure. The BIO 14.6 hamsters (approximately 1 year of age) weighed 7.4% more than their age-matched controls, an indication of edema, and showed overt cardiac hypertrophy (control vs. BIO 14.6 heart weight: .556 +/- .045 g vs. .990 +/- .043 g). A survey of extra-atrial tissues indicated that pulmonary and ventricular tissue from both control and BIO 14.6 hamsters possessed measurable levels of immunoreactive atriopeptin. However, a comparison of atriopeptin levels in the lungs and cardiac ventricles, respectively, of control and BIO 14.6 hamsters revealed profound differences. Pulmonary atriopeptin levels were 30-fold greater, and ventricular atriopeptin levels were 13.3-fold greater, in the BIO 14.6 hamsters. In addition, the total content of atriopeptin was 2.2-fold greater in the atria of BIO 14.6 hamsters. Dot blot analysis indicated that atriopeptin mRNA levels were greater in the atria (3.4-fold) and ventricles (17.9-fold) of BIO 14.6 hamsters. A similar analysis of atriopeptin mRNA in pulmonary tissue proved inconclusive. The function of the marked increase of pulmonary and ventricular atriopeptin is unknown; however, it is plausible that the peptide hormone serves to regulate the formation of pulmonary and peripheral edema.  相似文献   

17.
Chronic hypoxia may precondition the myocardium and protect from ischemia-reperfusion damage. We therefore examined the recovery of left and right ventricular function after ischemia and reperfusion (15 min each) in isolated blood-perfused working hearts from normoxic (Norm) and hypoxic (Hypo; 14 days, 10.5% O(2)) adult rats. In addition, the mRNA expression of hypoxia-inducible factor (HIF)-1alpha and the protein expression of endothelial nitric oxide synthase (eNOS) were measured. Postischemic left ventricular function recovered to 66 +/- 6% and 67 +/- 5% of baseline in Norm and Hypo, respectively. In contrast, postischemic right ventricular function was 93 +/- 2% of baseline in Hypo vs. 67 +/- 3% in Norm (P < 0.05). Improved postischemic right ventricular function in Hypo (93 +/- 2% and 96 +/- 2% of baseline) was observed with 95% O(2) or 21% O(2) in the perfusate, and it was not attenuated by glibenclamide (5 and 10 micromol/l) (86 +/- 4% and 106 +/- 6% recovery). HIF-1alpha mRNA and eNOS protein expression were increased in both left and right hypoxic ventricles. In conclusion, postischemic right, but not left, ventricular function was improved by preceding chronic hypoxia. ATP-sensitive K(+) channels are not responsible for the increased right ventricular tolerance to ischemia after chronic hypoxia in adult rat hearts.  相似文献   

18.
Adrenomedullin (ADM) is a vasoactive and natriuretic peptide. While it is known that ADM is increased in failing human ventricles, the expression of ADM in human ventricular allografts remains unknown. The present study was designed to investigate tissue localization and intensity of ADM expression in ventricular biopsy specimens and to characterize ventricular ADM in human cardiac allografts. Thirty-three post-transplant endomyocardial biopsy specimens were examined immunohistochemically. The average score (range: 0-4) of ADM immunoreactivity (IR) was 2.4+/-0.9 (mean+/-standard deviation). Right ventricular (RV) systolic pressure was significantly increased with high ADM-IR (p=0.048) and the ADM-IR positively associated with myocyte size (r(2)=0.23, p=0.010). In contrast, ADM-IR was not associated with systemic blood pressure, serum creatinine, cyclosporine concentration, cardiac fibrosis, or allograft rejection. The present study shows that ADM-IR is present in human ventricular endomyocardium after transplantation, and ADM-IR is associated with the magnitude of RV pressure and myocyte size, suggesting an important role for ventricular ADM in the counteraction against overload as well as in the progress of myocyte hypertrophy after heart transplantation.  相似文献   

19.
The inotropic effects of insulin in the rat heart are still incompletely understood. In this study, the effects of insulin on cardiac contraction were studied in right ventricular papillary muscles from both control rats and rats with chronic diabetes (lasting 16 weeks). Diabetes was induced by the application of streptozotocin (STZ) and the development of diabetes was documented by increased levels of blood glucose, by reduction in body weight and by decreased plasma concentrations of insulin. The contraction was significantly smaller in diabetic rats. Insulin (80 IU/l) reduced the contraction force in both control and diabetic groups. The post-rest potentiation of contraction was not influenced by insulin in control rats, but insulin increased it in diabetic rats. The negative inotropic effect of insulin was preserved in the presence of cyclopiazonic acid (3 micromol/l), a blocker of sarcoplasmic reticulum (SR) Ca2+ pump, in both control and diabetic groups. In contrast, the negative inotropic effect of insulin was completely prevented in the presence of nifedipine (3 micromol/l), a blocker of L-type Ca2+ current. We conclude that insulin exerts a significant negative inotropic effect in rat myocardium, both control and diabetic. This effect is probably related to processes of SR Ca2+ release triggering, whereas SR Ca2+ loading is not involved.  相似文献   

20.
Potential protective effects of aerobic exercise training on the myocardium, before an ischemic event, are not completely understood. The purpose of the study was to investigate the effects of exercise training on contractile function after ischemia-reperfusion (Langendorff preparation with 15-min global ischemia/30-min reperfusion). Trabeculae were isolated from the left ventricles of both sedentary control and 10- to 12-wk treadmill exercise-trained rats. The maximal normalized isometric force (force/cross-sectional area; Po/CSA) and shortening velocity (Vo) in isolated, skinned ventricular trabeculae were measured using the slack test. Ischemia-reperfusion induced significant contractile dysfunction in hearts from both sedentary and trained animals; left ventricular developed pressure (LVDP) and maximal rates of pressure development and relaxation (+/-dP/dtmax) decreased, whereas end-diastolic pressure (EDP) increased. However, this dysfunction (as expressed as percent change from the last 5 min before ischemia) was attenuated in trained myocardium [LVDP: sedentary -60.8 +/- 6.4% (32.0 +/- 5.5 mmHg) vs. trained -15.6 +/- 8.6% (64.9 +/- 6.6 mmHg); +dP/dtmax: sedentary -54.1 +/- 4.7% (1,058.7 +/- 124.2 mmHg/s) vs. trained -16.7 +/- 8.4% (1,931.9 +/- 188.3 mmHg/s); -dP/dtmax: sedentary -44.4 +/- 2.5% (-829.3 +/- 52.0 mmHg/s) vs. trained -17.9 +/- 7.2% (-1,341.3 +/- 142.8 mmHg/s); EDP: sedentary 539.5 +/- 147.6%; (41.3 +/- 6.0 mmHg) vs. trained 71.6 +/- 30.6%; 11.4 +/- 1.2 mmHg]. There was an average 26% increase in Po/CSA in trained trabeculae compared with sedentary controls, and this increase was not affected by ischemia-reperfusion. Ischemia-reperfusion reduced Vo by 39% in both control and trained trabeculae. The relative amount of the beta-isoform of myosin heavy chain (MHC-beta) was twofold greater in trained trabeculae as well as in the ventricular free walls. Despite a possible increase in the economy in the trained heart, presumed from a greater amount of MHC-beta, ischemia-reperfusion reduced Vo, to a similar extent in both control and trained animals. Nevertheless, the trained myocardium appears to have a greater maximum force-generating ability that may, at least partially, compensate for reduced contractile function induced by a brief period of ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号