共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AcSDKP对PDGF诱导的大鼠心脏成纤维细胞增殖和胶原合成的调节作用 总被引:2,自引:0,他引:2
目的:探讨N-乙酰基-丝氨酰-天门冬酰-赖氨酰-脯氨酰(AcSDKP)对血小板源性生长因子(PDGF)诱导的大鼠心脏成纤维细胞增殖和胶原合成的调节作用。方法:建立新生大鼠心脏成纤维细胞系;采用四甲基偶氮唑(MTT)法和^3H-TdR掺入法检测心脏成纤维细胞的增殖;采用^3H-脯氨酸掺入法检测心脏成纤维细胞胶原的合成。结果:PD3F在1~20ng/ml浓度范围内对心脏成纤维细胞增殖和胶原合成均有促进作用。且随着PDGF浓度的增加,其促细胞增殖和胶原合成作用增强,并在10ng/ml浓度时PDGF的促增殖和胶原合成效应最强。在10^-10~10^-8mol/L浓度范围内,AcSDKP对PDGF介导的心脏成纤维细胞增殖和胶原合成均有抑制作用,并且在10叫mol/L时,AcSDKP抑制心脏成纤维细胞增殖和胶原合成作用最强。结论:AcSDKP对PDGF介导的心脏成纤维增殖和胶原合成均有明显抑制作用,这可能与其抗心脏纤维化的作用相关。 相似文献
3.
目的:通过观察N-乙酰半胱氨酸(NAC)对大鼠心脏成纤维细胞(CFs)增殖和胶原合成的影响,探讨NAC对心脏重构的作用。方法:以培养的新生SD大鼠CFs为实验对象,给予不同浓度的NAC进行干预,48小时后用MTT比色法检测CFs增殖水平,用3H脯氨酸掺入法测定总胶原合成。结果:与对照组相比,不同浓度NAC作用下的CFs增殖水平和3H脯氨酸掺入量均比对照组低,且具有浓度依赖性(p<0.05)。结论:NAC能够抑制SD大鼠CFs增殖,并降低其胶原合成,因此NAC对心脏的病理性重构可能具有保护作用。 相似文献
4.
Kuruvilla L Nair RR Umashankar PR Lal AV Kartha CC 《Cell biochemistry and biophysics》2007,47(1):65-72
Given that vascular endothelial cells play an important role in the modulation of vascular structure and function, we hypothesized
that endocardial endothelial cells (EECs) may have a modulator role in regulating the cardiac interstitial cells. Endocardial
endothelial cells were isolated from freshly collected pig hearts and cardiac fibroblasts were isolated from 3- to 4-d-old
Wistar rats. Fibroblasts were cultured in the presence or absence of conditioned medium from EECs. Proliferation of cardiac
fibroblasts was measured by the incorporation of [3H]-Thymidine and collagen synthesis was assayed by the incorporation of [3H]-proline. To determine the involvement of signaling mediators, in separate experiments, cardiac fibroblasts were incubated
with BQ123 (selective ETA receptor antagonist), PD142893 (nonselective ETA/ETB receptor antagonist), Bis-indolylmaleimide (PKC inhibitor), PD 098059 (MEK inhibitor), or neutralizing anti-transforming
growth factor (TGF)-β-antibody. Endocardial endothelium-derived factors endothelin (ET)-1, TGF-β, and Angiotensin (Ang)-II
in the conditioned medium were assayed by enzyme-linked immunosorbent assay using commercially available kits. We report here
evidence that suggest that endocardial endothelial cells stimulate both proliferation and collagen synthesis of cardiac fibroblasts.
The response seems to be mediated by endothelin through its ETA receptor.
Our results also indicate that protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) pathways are essential for
the EEC-induced proliferation of cardiac fibroblasts. 相似文献
5.
目的:通过观察N-乙酰半胱氨酸(NAC)对大鼠心脏成纤维细胞(CFs)增殖和胶原合成的影响,探讨NAC对心脏重构的作用。方法:以培养的新生SD大鼠CFs为实验对象,给予不同浓度的NAC进行干预,48小时后用MTT比色法检测CFs增殖水平,用3H脯氨酸掺入法测定总胶原合成。结果:与对照组相比,不同浓度NAC作用下的CFs增殖水平和3H脯氨酸掺入量均比对照组低,且具有浓度依赖性(p〈0.05)。结论:NAC能够抑制SD大鼠CFs增殖,并降低其胶原合成,因此NAC对心脏的病理性重构可能具有保护作用。 相似文献
6.
心室成纤维细胞条件培养液促进成纤维细胞胶原合成和增殖 总被引:2,自引:0,他引:2
采用心室成纤维细胞条件培养液培养心室成纤维细胞,通过测定[^3H]-脯氨酸([^3H]-proline)的掺入率来了解心室成纤维细胞总胶原合成速率,通过测定[^3H]-胸腺嘧啶核苷([^3H]-TdR)的掺入率以及c-fos基因的表达丰度来了解心室成纤维细胞的增殖速率。结果显示:心室成纤维细胞条件培养液(FCGM)能增加细胞自身的[^3H]-proline的掺入率和[^3H]-TdR的掺入率,并具有剂量依赖性;FCGM也能促进细胞自身c-fos基因的表达,刺激后1h达高峰。ETA受体拮抗剂BQ123能部分阻断FCGM增加成纤维细胞胶原合成的增殖作用,而AT1受体拮抗剂CV11974和α肾上腺素受体拮抗剂regitin无此效果。结果提示:心室成纤维细胞具有自分泌功能,能分泌内皮素等生物活性物质,促进成纤维细胞胶原的合成和增殖。 相似文献
7.
Lymphocyte-mediated activation of fibroblast proliferation and collagen production. 总被引:40,自引:0,他引:40
Among the many activities of antigen-triggered lymphocytes may be the control of fibroblast function. Thymus-dependent lymphocytes challenged with the specific antigen, dinitrophenylated ovalbumin or tetanus toxoid produced a nondialyzable factor(s) capable of causing dermal fibroblasts to undergo DNA synthesis. These fibroblasts, which exhibit basal proliferative levels in the absence of serum, responded to the lymphocyte factor with maximal thymidine incorporation at 48 to 72 hr. In addition, these activated fibroblasts significantly increased their production of protein of both the collagenous and noncollagenous types. This increase in protein synthesis preceded maximal proliferation. Thus, the fibroplasia consisting of increased numbers of fibroblasts and of increased collagen deposition associated with chronic inflammatory diseases may be the direct consequence of a specific antigenic challenge. 相似文献
8.
Tadashi Mio Yuichi Adachi Debra J. Romberger Ronald F. Ertl Stephen I. Rennard 《In vitro cellular & developmental biology. Animal》1996,32(7):427-433
Summary Fibroblastsin vivo reside in a three-dimensional (3-D) matrix. The 3-D culture method using collagen gels provides valuable information, but
is also has some practical difficulties. In particular, the changes caused by the contraction of gels and the occasional abrupt
detachment from the underlying surface have made extended culture difficult. In this study, the 3-D culture method was modified
in order to observe the cells with minimal change of substrata for longer periods. The proliferation characteristics of fibroblasts
cultured in gels in response to fetal calf serum (FCS), to two defined growth factors, insulin and platelet-derived growth
factor (PDGF), and to a growth inhibitory factor, prostaglandin E2 (PGE2), were evaluated with this system in comparison with monolayer cultured fibroblasts. The DNA content of fibroblasts cultured
both in gels and on dishes increased in response to FCS in a concentration-dependent manner. The proliferation of gel-cultured
fibroblasts, however, was lower than that of dish-cultured cells, and higher concentrations of serum were necessary for proliferation.
The response of gel-cultured cells to PDGF was also less than that of dish-cultured cells. In addition, fibroblasts cultured
in gel culture did not respond to insulin, while the fibroblasts on dishes responded to insulin in a concentration-dependent
manner. In contrast to the reduced response to growth stimulators, PGE2 inhibited proliferation in gel culture and in monolayer culture similarly. The reduced responsiveness to growth stimulation
but equivalent response to growth inhibition may account for reduced proliferation of fibroblasts in 3-D culture. 相似文献
9.
To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury. 相似文献
10.
Xiaolong Yuan Jinchun Pan Lijuan Wen Baoyong Gong Jiaqi Li Hongbin Gao Weijiang Tan Shi Liang Hao Zhang Xilong Wang 《Journal of cellular and molecular medicine》2020,24(1):227-237
Previous studies have implicated the attractive and promising role of miR‐590‐3p to restore the cardiac function following myocardial infarction (MI). However, the molecular mechanisms for how miR‐590‐3p involves in cardiac fibrosis remain largely unexplored. Using human cardiac fibroblasts (HCFs) as the cellular model, luciferase report assay, mutation, EdU assay and transwell migration assay were applied to investigate the biological effects of miR‐590‐3p on the proliferation, differentiation, migration and collagen synthesis of cardiac fibroblasts. We found that miR‐590‐3p significantly suppressed cell proliferation and migration of HCFs. The mRNA and protein expression levels of α‐SMA, Col1A1 and Col3A were significantly decreased by miR‐590‐3p. Moreover, miR‐590‐3p directly targeted at the 3’UTR of ZEB1 to repress the translation of ZEB1. Interfering with the expression of ZEB1 significantly decreased the cell proliferation, migration activity, mRNA and protein expressions of α‐SMA, Col1A1 and Col3A. Furthermore, the expressions of miR‐590‐3p and ZEB1 were identified in infarct area of MI model in pigs. Collectively, miR‐590‐3p suppresses the cell proliferation, differentiation, migration and collagen synthesis of cardiac fibroblasts by targeting ZEB1. These works will provide useful biological information for future studies on potential roles of miR‐590‐3p as the therapeutic target to recover cardiac function following MI. 相似文献
11.
Jingwei Sheng Winston Shim Heming Wei Sze Yun Lim Reginald Liew Tien Siang Lim Boon Hean Ong Yeow Leng Chua Philip Wong 《Journal of cellular and molecular medicine》2013,17(10):1345-1354
Cardiac fibroblasts are crucial in pathophysiology of the myocardium whereby their aberrant proliferation has significant impact on cardiac function. Hydrogen sulphide (H2S) is a gaseous modulator of potassium channels on cardiomyocytes and has been reported to attenuate cardiac fibrosis. Yet, the mechanism of H2S in modulating proliferation of cardiac fibroblasts remains poorly understood. We hypothesized that H2S inhibits proliferative response of atrial fibroblasts through modulation of potassium channels. Biophysical property of potassium channels in human atrial fibroblasts was examined by whole‐cell patch clamp technique and their cellular proliferation in response to H2S was assessed by BrdU assay. Large conductance Ca2+‐activated K+ current (BKCa), transient outward K+ current (Ito) and inwardly rectifying K+ current (IKir) were found in human atrial fibroblasts. Current density of BKCa (IC50 = 69.4 μM; n = 6), Ito (IC50 = 55.1 μM; n = 6) and IKir (IC50 = 78.9 μM; n = 6) was significantly decreased (P < 0.05) by acute exposure to NaHS (a H2S donor) in atrial fibroblasts. Furthermore, NaHS (100–500 μM) inhibited fibroblast proliferation induced by transforming growth factor‐β1 (TGF‐β1; 1 ng/ml), Ang II (100 nM) or 20% FBS. Pre‐conditioning of fibroblasts with NaHS decreased basal expression of Kv4.3 (encode Ito), but not KCa1.1 (encode BKCa) and Kir2.1 (encode IKir). Furthermore, H2S significantly attenuated TGF‐β1–stimulated Kv4.3 and α‐smooth muscle actin expression, which coincided with its inhibition of TGF‐β–induced myofibroblast transformation. Our results show that H2S attenuates atrial fibroblast proliferation via suppression of K+ channel activity and moderates their differentiation towards myofibroblasts. 相似文献
12.
An in vitro model of fibroplasia: simultaneous quantification of fibroblast proliferation, migration, and collagen synthesis 总被引:1,自引:0,他引:1
M F Graham R F Diegelmann I K Cohen 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1984,176(3):302-308
Previous studies of fibroblast proliferation, migration, and collagen synthesis have been limited in their ability to define the interrelationship among these events in response to various inflammatory mediators. We have now defined an in vitro tissue culture model for the synchronous quantification of these parameters of fibroplasia. Biopsies (2 mm) of chicken flexor tendons are embedded in a fibrin matrix and exposed to various factors for 5 days in tissue culture. The availability of the fibrin matrix surrounding the tendon biopsy satisfies the need for a solid support medium for fibroblast migration. Multiple measurements of tendon fibroblast proliferation, migration into the fibrin matrix, and relative collagen synthesis are then made on these preparations. Fetal calf serum stimulated tendon fibroblast proliferation and migration in a dose responsive fashion, whereas the selective expression of collagen synthesis was decreased. Platelet lysate stimulated fibroblast proliferation at low concentration, but migration only at high concentration and was without effect on relative collagen synthesis. This model now provides a means of more clearly defining the influence of various inflammatory factors on the events of fibroplasia. 相似文献
13.
Harris BS Zhang Y Card L Rivera LB Brekken RA Bradshaw AD 《American journal of physiology. Heart and circulatory physiology》2011,301(3):H841-H847
Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production. 相似文献
14.
15.
16.
Human dermal fibroblasts suspended in a collagen matrix exhibit a 4-day delay in cell division, while the same cells in monolayer divided by day 1. The initial rates of 3H-thymidine incorporation by cells in monolayer or suspended in collagen were not significantly different. When suspended in collagen, there was a threefold increase in the proportion of cells in a tetraploidal (4N) DNA state compared to the same cells in monolayer. Flow cytometry analysis and 3H-thymidine incorporation studies identified the delay of cell division as a consequence of a block in the G2/M of the cell cycle and not an inhibition of DNA synthesis. The inclusion of 150 μ/ml of hyaluronic acid (HA) in the manufacture of fibroblast populated collagen lattices (FPCL) caused a stimulation of cell division, as determined by cell counting; increased the expression of tubulin, as determined by Western blot analysis; and reduced the proportion of cells in a 4N state, as determined by flow cytometry. HA added to the same cells growing in monolayer produced a minimal increase in the rate of cell division or DNA synthesis. HA supplementation of FPCLs stimulated cell division as well as tubulin concentrations, but it did not enhance lattice contraction. The introduction of tubulin isolated from pig brain or purchased tubulin into fibroblasts by electroporation prior to their transfer into collagen lattices promoted cell division in the first 24 hours and enhanced FPCL contraction. It is proposed that tubulin protein, the building blocks of microtubules, is limited in human fibroblasts residing within a collagen matrix. When human fibroblasts are suspended in collagen, one effect of added HA may be to stimulate the synthesis of tubulin which assists cells through the cell cycle. J. Cell. Physiol. 177:465–473, 1998. © 1998 Wiley-Liss, Inc. 相似文献
17.
G Chandrakasan R S Bhatnagar 《Cellular and molecular biology, including cyto-enzymology》1991,37(7):751-755
Exposure of diploid fetal human fibroblasts (IMR-90) to superoxide generated by dihydroxyfumarate resulted in increased collagen synthesis. The synthesis of type III collagen was stimulated to a greater extent than the synthesis of type I collagen. The stimulation of collagen synthesis was abolished by superoxide dismutase. Our observations suggest that superoxide may play a role in the regulation of collagen synthesis and may modulate differential collagen gene expression. These observations may explain the increased synthesis of collagen in tissues following inflammation or exposure to oxidant conditions. 相似文献
18.
Interactions between cells and the extracellular matrix (ECM) play essential roles in modulating cell behavior during development and disease. The myocardial ECM is composed predominantly of interstitial collagen type I and type III. The composition, organization, and accumulation of these collagens are altered concurrent with cardiovascular development and disease. Changes in these parameters are thought to play significant roles in myocardial function. While a number of studies have examined how changes in the ECM affect myocardial function as a whole, much less is known regarding the response at the cellular level to changes in the collagenous ECM. Experiments were carried out to determine the effects of alterations in collagen density and ECM stiffness on the behavior of isolated heart fibroblasts. In vitro bioassays were performed to measure the effects of changes in collagen concentration (0.75-1.25 mg/ml) on adhesion, migration, spreading, and gene expression by heart fibroblasts. Increased density of collagen in 3-dimensional gels resulted in more efficient adhesion, spreading, and migration by heart fibroblasts. These experiments indicated that the density of the collagen matrix has a significant impact on fibroblast function. These studies begin to elucidate the effects of ECM density at the cellular level in the myocardium. 相似文献
19.
Olson ER Naugle JE Zhang X Bomser JA Meszaros JG 《American journal of physiology. Heart and circulatory physiology》2005,288(3):H1131-H1138
Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix proteins. Prolonged activation of CFs leads to cardiac fibrosis and reduced myocardial contractile function. Resveratrol (RES) exhibits a number of cardioprotective properties; however, the possibility that this compound affects CF function has not been considered. The current study tests whether RES directly influences the growth and proliferation of CFs and differentiation to the hypersecretory myofibroblast phenotype. Pretreatment of CFs with RES (5-25 microM) inhibited basal and ANG II-induced extracellular signal-regulated kinase (ERK) 1/2 and ERK kinase activation. This inhibition by RES reduced basal proliferation and blocked ANG II-induced growth and proliferation of CFs in a concentration-dependent manner, as measured by [(3)H]leucine and [(3)H]thymidine incorporation, respectively. RES pretreatment attenuated ERK phosphorylation when CFs were stimulated with 0.2 nM epidermal growth factor (EGF), a concentration at which EGF-induced ERK activation over basal was similar to the phosphorylation induced by 100 nM ANG II. Akt phosphorylation in CFs was unaffected by treatment with either 100 nM ANG II or 25 microM RES. Pretreatment of CFs with RES also reduced both ANG II- and transforming growth factor-beta-induced CF differentiation to the myofibroblast phenotype, indicated by a reduction in alpha-smooth muscle actin expression and stress fiber organization in CFs. This study identifies RES as an anti-fibrotic agent in the myocardium by limiting CF proliferation and differentiation, two critical steps in the pathogenesis of cardiac fibrosis. 相似文献
20.
Fengfeng Li Tao Cheng Bingfang Zeng 《Biochemical and biophysical research communications》2009,382(2):259-263
Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation. 相似文献