首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autism is a neurodevelopmental disorder with early manifestation. It is a multifactorial disorder and several susceptible chromosomal regions for autism are identified through genome scan studies. The gene coding for glutamate receptor 6 (GluR6 or GRIK2) has been suggested as a candidate gene for autism based on its localization in the autism specific region on chromosome 6q21 and the involvement of receptor protein in cognitive functions like learning and memory. Despite its importance, so far no studies have been carried out on possible involvement of GluR6 with autism in the Indian population. Therefore in the present study, we have performed genetic analysis of three markers of GluR6 (SNP1: rs2227281, SNP2: rs2227283, SNP3: rs2235076) for possible association with autism through population, and family-based (TDT and HHRR) approaches. DSM-IV criteria and CARS/ADI-R have been utilized for diagnosis. Genotyping analysis for the SNPs has been carried out in 101 probands with autism spectrum disorder, 180 parents and 152 controls from different regions of India. Since the minor allele frequency of SNP3 was too low, the association studies have been carried out only for SNP1 and SNP2. Even though two earlier studies have shown association of these markers with autism, the present case–control and TDT, as well as HHRR analyses have not demonstrated any biased transmission of alleles or haplotypes to the affected offspring. Thus our results suggest that these markers of GluR6 are unlikely to be associated with autism in the Indian population.  相似文献   

2.
There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.  相似文献   

3.
草鱼种群SSR分析中样本量及标记数量对遗传多度的影响   总被引:12,自引:0,他引:12  
利用45对微卫星分子标记(SSR),以草鱼(Ctenopharyngodon idellus)自然群体为实验材料,探讨野生群体遗传多样性研究中所需的最适样本量与标记量。实验设置6个样本量梯度,9个标记量梯度。对等位基因数(Na)、有效等位基因数(Ne)、观察杂合度(Ho)、期望杂合度(He)等遗传多样性指标的变化趋势进行统计分析。结果表明,样本量、微卫星标记的数量和多态性水平对群体遗传多样性均有较大的影响,其中等位基因数与样本量大小呈显著正相关,而杂合度随标记量的增多而剧烈波动。当取样量大于40,标记量大于25时,各遗传参数值趋于稳定。因此,在应用微卫星标记对水产动物自然群体的遗传学研究中,要根据所研究种类的特点,尽可能采样40尾以上,采用25个以上标记,避免由人为选择的偏差对群体遗传多样性水平的正确评估所造成的影响。同时根据上述研究结果,对陕西草鱼自然群体进行了遗传多样性的评估,结果显示该群体平均等位基因数(MNA)、平均有效等位基因数、平均观测杂合度、平均期望杂合度分别为7.26、4.21、0.73、0.68,认为该群体具有较高的遗传多样性。  相似文献   

4.
Understanding autism: insights from mind and brain   总被引:16,自引:0,他引:16  
Autism is a developmental disorder characterized by impaired social interaction and communication as well as repetitive behaviours and restricted interests. The consequences of this disorder for everyday life adaptation are extremely variable. The general public is now more aware of the high prevalence of this lifelong disorder, with ca. 0.6% of the population being affected. However, the signs and symptoms of autism are still puzzling. Since a biological basis of autism was accepted, approaches from developmental cognitive neuroscience have been applied to further our understanding of the autism spectrum. The study of the behavioural and underlying cognitive deficits in autism has advanced ahead of the study of the underlying brain abnormalities and of the putative genetic mechanisms. However, advances in these fields are expected as methodological difficulties are overcome. In this paper, recent developments in the field of autism are outlined. In particular, we review the findings of the three main neuro-cognitive theories of autism: theory-of-mind deficit, weak central coherence and executive dysfunction.  相似文献   

5.
The autistic disorder was firstly described by Leo Kanner sixty years ago. This complex developmental disability is characterized by social and communicative impairments and repetitive and stereotyped behaviours and interests. The prevalence of autism in the general population is about 1 in 1,000, with four males affected for one female. In approximately 15% of the cases, autism is associated with known genetic disorders, such as fragile X syndrome, tuberous sclerosis or Rett syndrome. Nevertheless, a recognised medical etiology can only be identified in a minority of cases. A higher recurrence risk in families with autistic subjects (45 times greater than the prevalence in the general population) and higher concordance for autism among monozygotic (60-90%) than dizygotic (0-10%) twins argue for a genetic predisposition to idiopathic autism. The past decade has been marked by an increased interest in the genetic basis of autism, with a series of multiple independent whole genome scans and chromosomal abnormalities studies. These analyses have pointed out several candidate regions on chromosomes 2q, 7q, 6q, 15q and sex chromosomes. These regions possess candidate genes that have been screened for mutations or association with autism. However, a clear involvement of a major susceptibility gene (or genes) in autism remains far from clear. The results from linkage studies and the clear drop in the concordance rates between monozygotic and dizygotic twins suggests that the genetic aetiology of autism is certainly heterogeneous (different genes in different families) and polygenic (more than one affected gene per individual). The almost finished sequence of the human genome and the generation of haplotype maps will shed light on the inter-individual genetic variability and will certainly increase the power and reliability of association studies for complex traits, such as autism.  相似文献   

6.
Individuals within social groups often show consistent differences in behaviour across time and context. Such interindividual differences and the evolutionary challenge they present have recently generated considerable interest. Social insects provide some of the most familiar and spectacular examples of social groups with large interindividual differences. Investigating these within‐group differences has a long research tradition, and behavioural variability among the workers of a colony is increasingly regarded as fundamental for a key feature of social insects: division of labour. The goal of this review is to illustrate what we know about both the proximate mechanisms underlying behavioural variability among the workers of a colony and its ultimate consequences; and to highlight the many open questions in this research field. We begin by reviewing the literature on mechanisms that potentially introduce, maintain, and adjust the behavioural differentiation among workers. We highlight the fact that so far, most studies have focused on behavioural variability based on genetic variability, provided by e.g. multiple mating of the queen, while other mechanisms that may be responsible for the behavioural differentiation among workers have been largely neglected. These include maturational, nutritional and environmental influences. We further discuss how feedback provided by the social environment and learning and experience of adult workers provides potent and little‐explored sources of differentiation. In a second part, we address what is known about the potential benefits and costs of increased behavioural variability within the workers of a colony. We argue that all studies documenting a benefit of variability so far have done so by manipulating genetic variability, and that a direct test of the effect of behavioural variability on colony productivity has yet to be provided. We emphasize that the costs associated with interindividual variability have been largely overlooked, and that a better knowledge of the cost/benefit balance of behavioural variability is crucial for our understanding of the evolution of the mechanisms underlying the social organization of insect societies. We conclude by highlighting what we believe to be promising but little‐explored avenues for future research on how within‐colony variability has evolved and is maintained. We emphasize the need for comparative studies and point out that, so far, most studies on interindividual variability have focused on variability in individual response thresholds, while the significance of variability in other parameters of individual response, such as probability and intensity of the response, has been largely overlooked. We propose that these parameters have important consequences for the colony response. Much more research is needed to understand if and how interindividual variability is modulated in order to benefit division of labour, homeostasis and ultimately colony fitness in social insects.  相似文献   

7.
Comparative analyses in aquatic microbial ecology: how far do they go?   总被引:7,自引:0,他引:7  
Methodological developments in recent years have led to an increase in empirical databases on the abundance and functions of aquatic microbes, now allowing synthesis studies. Most of these studies have adopted a comparative approach, such that comparative analyses are now available for most aspects of aquatic microbial food webs (more than 50 papers published in the last 15 years). Some of these analyses apparently yield conflicting results, introducing confusion and unnecessary disputes in the field. We briefly review the comparative analyses so far produced and we highlight generalities, show that some of the perceived discrepancies largely derive from partial analyses of a general underlying trend and formulate predictions based on these general trends that provide new avenues for research.  相似文献   

8.
Autism is a childhood neuropsychiatric disorder that, despite exhibiting high heritability, has largely eluded efforts to identify specific genetic variants underlying its etiology. We performed a two-stage genetic study in which genome-wide linkage and family-based association mapping was followed up by association and replication studies in an independent sample. We identified a common polymorphism in contactin-associated protein-like 2 (CNTNAP2), a member of the neurexin superfamily, that is significantly associated with autism susceptibility. Importantly, the genetic variant displays a parent-of-origin and gender effect recapitulating the inheritance of autism.  相似文献   

9.
Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20?years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.  相似文献   

10.
Intellectual disability (ID), often attributed to autosomal-recessive mutations, occurs in 40% of autism spectrum disorders (ASDs). For this reason, we conducted a genome-wide analysis of runs of homozygosity (ROH) in simplex ASD-affected families consisting of a proband diagnosed with ASD and at least one unaffected sibling. In these families, probands with an IQ ≤ 70 show more ROH than their unaffected siblings, whereas probands with an IQ > 70 do not show this excess. Although ASD is far more common in males than in females, the proportion of females increases with decreasing IQ. Our data do support an association between ROH burden and autism diagnosis in girls; however, we are not able to show that this effect is independent of low IQ. We have also discovered several autism candidate genes on the basis of finding (1) a single gene that is within an ROH interval and that is recurrent in autism or (2) a gene that is within an autism ROH block and that harbors a homozygous, rare deleterious variant upon analysis of exome-sequencing data. In summary, our data suggest a distinct genetic architecture for participants with autism and co-occurring intellectual disability and that this architecture could involve a role for recessively inherited loci for this autism subgroup.  相似文献   

11.
Mapping early brain development in autism   总被引:3,自引:0,他引:3  
Although the neurobiology of autism has been studied for more than two decades, the majority of these studies have examined brain structure 10, 20, or more years after the onset of clinical symptoms. The pathological biology that causes autism remains unknown, but its signature is likely to be most evident during the first years of life when clinical symptoms are emerging. This review highlights neurobiological findings during the first years of life and emphasizes early brain overgrowth as a key factor in the pathobiology of autism. We speculate that excess neuron numbers may be one possible cause of early brain overgrowth and produce defects in neural patterning and wiring, with exuberant local and short-distance cortical interactions impeding the function of large-scale, long-distance interactions between brain regions. Because large-scale networks underlie socio-emotional and communication functions, such alterations in brain architecture could relate to the early clinical manifestations of autism. As such, autism may additionally provide unique insight into genetic and developmental processes that shape early neural wiring patterns and make possible higher-order social, emotional, and communication functions.  相似文献   

12.
13.
孤独症是一种病因不明的广泛性发育障碍疾病,它是孤独症谱系障碍的代表疾病,发病年龄早,大多在3岁以内起病,以社会交往障碍,言语交流障碍,动作行为的重复刻板和兴趣范围狭窄为三大临床核心症状。孤独症发病率呈逐年增高趋势,我国患者量已超过一百万。但是迄今为止仍没有特异的方法与手段对孤独症进行彻底有效地诊治,为社会和家庭带来了沉重的负担,因此,其发病机制是迫切需要研究的难题。目前国际上公认为遗传因素在孤独症的发病中起着重要作用,但对于致病基因的确定仍不明确。突触后致密物(PSD)在中枢神经系统神经递质和信息的传递过程中起重要作用,影响学习记忆及认知相关功能,而孤独症患者存在认知相关功能损伤的表现,二者可能存在一定的联系。本文对PSD基因功能以及与孤独症关系的研究加以综述,希望有助于孤独症的病因学研究,以期早日改善该病的诊疗及预防。  相似文献   

14.
The use of genetic resistance is considered to be the most effective and sustainable approach to the control of plant pathogens. Although most of the known natural resistance genes are monogenic dominant R genes that are predominant against fungi and bacteria, more and more recessive resistance genes against viruses have been cloned in the last decade. Interestingly, of the 14 natural recessive resistance genes against plant viruses that have been cloned from diverse plant species thus far, 12 encode the eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. This review is intended to summarize the current state of knowledge about eIF4E and the possible mechanisms underlying its essential role in virus infection, and to discuss recent progress and the potential of eIF4E as a target gene in the development of genetic resistance to viruses for crop improvement.  相似文献   

15.
Family studies for Crohn disease (CD) report extensive linkage on chromosome 16q and pinpoint NOD2 as a possible causative locus. However, linkage is also observed in families that do not bear the most frequent NOD2 causative mutations, but no other signals on 16q have been found so far in published genome-wide association studies. Our aim is to identify this missing genetic contribution. We apply a powerful genetic mapping approach to the Wellcome Trust Case-Control Consortium and the National Institute of Diabetes and Digestive and Kidney Diseases genome-wide association data on CD. This method takes into account the underlying structure of linkage disequilibrium (LD) by using genetic distances from LD maps and provides a location for the causal agent. We find genetic heterogeneity within the NOD2 locus and also show an independent and unsuspected involvement of the neighboring gene, CYLD. We find associations with the IRF8 region and the region containing CDH1 and CDH3, as well as substantial phenotypic and genetic heterogeneity for CD itself. The genes are known to be involved in inflammation and immune dysregulation. These findings provide insight into the genetics of CD and suggest promising directions for understanding disease heterogeneity. The application of this method thus paves the way for understanding complex inheritance in general, leading to the dissection of different pathways and ultimately, personalized treatment.  相似文献   

16.
Genetics of type 2 diabetes   总被引:4,自引:0,他引:4  
Identification and characterization of genetic variants that either cause or predispose to diabetes are a major focus of biomedical research. As of early 2007, the molecular basis of most forms of monogenic diabetes resulting from beta-cell dysfunction is known and, in particular, there has been recent success in delineating the genetic aetiology of neonatal diabetes. Finding genes predisposing to more common, multifactorial forms of type 2 diabetes represents a far greater challenge, and only a handful of robust, well-replicated examples have been established. Nevertheless, 2006 heralded identification of the most important type 2 diabetes susceptibility gene known so far, TCF7L2, and in 2007 large-scale genome-wide association studies are destined to provide novel insights into the genetic architecture and biology of type 2 diabetes.  相似文献   

17.
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.  相似文献   

18.
Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.  相似文献   

19.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.  相似文献   

20.
Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non‐genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non‐genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号