首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Park D  Shim E  Kim Y  Kim YM  Lee H  Choe J  Kang D  Lee YS  Jeoung D 《Molecules and cells》2008,25(2):184-195
We examined the role of c-FLIP in the motility of HeLa cells. A small interfering RNA (siRNA) directed against c-FLIP inhibited the adhesion and motility of the cells without affecting their growth rate. The long form of c-FLIP (c-FLIPL), but not the short form (c-FLIPS), enhanced adhesion and motility. Downregulation of c-FLIPL with siRNA decreased phosphorylation of FAK and ERK, while overexpression of c-FLIPL increased their phosphorylation. Overexpression of FAK activated ERK, and enhanced the motility of HeLa cells. FRNK, an inhibitory fragment of FAK, inhibited ERK and decreased motility. Inhibition of ERK also significantly suppressed c-FLIPL-promoted motility. Inhibition of ROCK by Y27632 suppressed the c-FLIPL-promoted motility by reducing phosphorylation of FAK and ERK. Overexpression of c-FLIPL increased the expression and secretion of MMP-9, and inhibition of MMP-9 by Ilomastat reduced c-FLIPL- promoted cell motility. A caspase-like domain (amino acids 222-376) was found to be necessary for the c-FLIPL-promoted cell motility. We conclude that c-FLIPL promotes the motility of HeLa cells by activating FAK and ERK, and increasing MMP-9 expression.  相似文献   

2.
Inhibition of NF-kappaB activation increases susceptibility to tumor necrosis factor (TNF)alpha-induced cell death, concurrent with caspases and prolonged c-Jun N-terminal kinase (JNK) activation, and reactive oxygen species (ROS) accumulation. However, the detailed mechanisms are unclear. Here we show that cellular FLICE-inhibitory protein (c-FLIP) is rapidly lost in NF-kappaB activation-deficient, but not wild-type fibroblasts upon TNFalpha stimulation, indicating that NF-kappaB normally maintains the cellular levels of c-FLIP. The ectopic expression of the long form of c-FLIP (c-FLIPL) inhibits TNFalpha-induced prolonged JNK activation and ROS accumulation in NF-kappaB activation-deficient fibroblasts. Conversely, TNFalpha induces prolonged JNK activation and ROS accumulation in c-Flip-/- fibroblasts. Moreover, c-FLIPL directly interacts with a JNK activator, MAP kinase kinase (MKK)7, in a TNFalpha-dependent manner and inhibits the interactions of MKK7 with MAP/ERK kinase kinase 1, apoptosis-signal-regulating kinase 1, and TGFbeta-activated kinase 1. This stimuli-dependent interaction of c-FLIPL with MKK7 might selectively suppress the prolonged phase of JNK activation. Taken that ROS promote JNK activation and activation of the JNK pathway may promote ROS accumulation, c-FLIPL might block this positive feedback loop, thereby suppressing ROS accumulation.  相似文献   

3.
Hyaluronic acid (HA) is known to play an important role in motility of tumor cells. However, the molecular mechanisms associated with HA-promoted melanoma cell motility are not fully understood. Treatment of cells with HA was shown to increase the production of reactive oxygen species (ROS) in a CD44-dependent manner. Antioxidants, such as N-acetyl-l-cysteine and seleno-l-methionine, prevented HA from enhancing cell motility. Protein kinase C (PKC)-alpha and PKCdelta were responsible for increased Rac1 activity, production of ROS, and mediated HA-promoted cell motility. HA increased Rac1 activity via CD44, PKCalpha, and PKCdelta. Transfection with dominant negative and constitutive active Rac1 mutants demonstrated that Rac1 was responsible for the increased production of ROS and cell motility by HA. Inhibition of NADPH oxidase by diphenylene iodonium and down-regulation of p47Phox and p67Phox decreased the ROS level, suggesting that NADPH oxidase is the main source of ROS production. Rac1 increased phosphorylation of FAK. FAK functions downstream of and is necessary for HA-promoted cell motility. Secretion and expression of MMP-2 were increased by treatment with HA via the action of PKCalpha, PKCdelta, and Rac1 and the production of ROS and FAK. Ilomastat, an inhibitor of MMP-2, exerted a negative effect on HA-promoted cell motility. HA increased interaction between CD44 and epidermal growth factor receptor (EGFR). AG1478, an inhibitor of EGFR, decreased phosphorylation of PKCalpha, PKCdelta, and Rac1 activity and suppressed induction of p47Phox and p67Phox. These results suggest that CD44-EGFR interaction is necessary for HA-promoted cell motility by regulating PKC signaling. EGFR-Akt interaction promoted by HA was responsible for the increased production of ROS and HA-promoted cell motility. In summary, HA promotes CD44-EGFR interaction, which in turn activates PKC signaling, involving Akt, Rac1, Phox, and the production of ROS, FAK, and MMP-2, to enhance melanoma cell motility.  相似文献   

4.
We previously identified a novel cancer/testis antigen gene CAGE by screening cDNA expression libraries of human testis and gastric cancer cell lines with sera of gastric cancer patients. CAGE is expressed in many cancers and cancer cell lines, but not in normal tissues apart from the testis. In the present study, we investigated its role in the motility of cells of two human cancer cell lines: HeLa and the human hepatic cancer cell line, SNU387. Induction of CAGE by tetracycline or transient transfection enhanced the migration and invasiveness of HeLa cells, but not the adhesiveness of either cell line. Overexpression of CAGE led to activation of ERK and p38 MAPK but not Akt, and inhibition of ERK by PD98059 or p38 MAPK by SB203580 counteracted the CAGE-promoted increase in motility in both cell lines. Overexpression of CAGE also resulted in a reduction of ROS and an increase of ROS scavenging, associated with induction of catalase activity. Inhibition of ERK and p38 MAPK increased ROS levels in cells transfected with CAGE, suggesting that ROS reduce the motility of both cell lines. Inhibition of ERK and p38 MAPK reduced the induction of catalase activity resulting from overexpression of CAGE, and inhibition of catalase reduced CAGE-promoted motility. We conclude that CAGE enhances the motility of cancer cells by activating ERK and p38 MAPK, inducing catalase activity, and reducing ROS levels.  相似文献   

5.
6.
Expression of activated Ras causes an increase in intracellular content of reactive oxygen species (ROS). To determine the role of ROS up-regulation in mediation of Ras-induced morphological transformation and increased cell motility, we studied the effects of hydrogen peroxide and antioxidant NAC on morphology of REF52 rat fibroblasts and their ability to migrate into the wound in vitro. Treatment with low dosages of hydrogen peroxide leading to 1.5- to 2-fold increase in intracellular ROS levels induced changes of cell shape, actin cytoskeleton organization, cell adhesions and migration resembling those in Ras-transformed cells. On the other hand, treatment with NAC attenuating ROS up-regulation in cells with conditional or constitutive expression of activated Ras led to partial reversion of morphological transformation and decreased cell motility. The effect of ROS on cell morphology and motility probably results from modulation of activity of Rac1, Rho, and cofilin proteins playing a key role in regulation of actin dynamics. The obtained data are consistent with the idea that ROS up-regulation mediates two key events in Ras-induced morphological transformation and cell motility: it is responsible for Rac1 activation and is necessary (though insufficient) for realization of Ras-induced cofilin dephosphorylation.  相似文献   

7.
Calyculin A (Cal A) is a serine/threonine phosphatase inhibitor that is capable of inducing apoptosis in cancer cells. In this study, we examined whether Cal A could modulate TRAIL-induced apoptosis in human renal carcinoma-derived Caki cells. Our results show that Cal A is capable of sensitizing Caki cells to TRAIL-induced apoptosis, as well as U2OS human osteosarcoma cells and A549 human lung adenocarcinoma epithelial cells. Cal A increases intracellular ROS production and down-regulates c-FLIP(L) expression. Interestingly, the down-regulation of protein phosphatase 1 (PP1) by PP1 siRNA also reduced c-FLIP(L) expression via reactive oxygen species production. Furthermore, Cal A induced death receptor 4 (DR4) mRNA and protein expression by enhancing DR4 mRNA stability. We also found that PP4 siRNA up-regulated DR4 mRNA and protein expression. Collectively, our results suggest that Cal A could enhance TRAIL-mediated apoptosis via the down-regulation of c-FLIP(L) and the up-regulation of DR4 in human renal cell carcinoma cell line Caki.  相似文献   

8.
c-FLIPR, a new regulator of death receptor-induced apoptosis   总被引:12,自引:0,他引:12  
c-FLIPs (c-FLICE inhibitory proteins) play an essential role in regulation of death receptor-induced apoptosis. Multiple splice variants of c-FLIP have been described on the mRNA level; so far only two of them, c-FLIP(L) and c-FLIP(S,) had been found to be expressed at the protein level. In this report, we reveal the endogenous expression of a third isoform of c-FLIP. We demonstrate its presence in a number of T and B cell lines as well as in primary human T cells. We identified this isoform as c-FLIP(R), a death effector domain-only splice variant previously identified on the mRNA level. Impor-/tantly, c-FLIP(R) is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex upon CD95 stimulation. Several properties of c-FLIP(R) are similar to c-FLIP(S): both isoforms have a short half-life, a similar pattern of expression during activation of primary human T cells, and are strongly induced in T cells upon CD3/CD28 costimulation. Taken together, our data demonstrate endogenous expression of c-FLIP(R) and similar roles of c-FLIP(R) and c-FLIP(S) isoforms in death receptor-mediated apoptosis.  相似文献   

9.
10.
Although the long isoform of cellular FLIP (c-FLIP(L)) has been implicated in TCR-mediated signaling, its role in T cell proliferation remains controversial. Some studies have demonstrated that overexpression of c-FLIP(L) promotes T cell proliferation and NF-kappaB activation, whereas others have reported that c-FLIP(L) overexpression has no effect or even inhibits T cell proliferation. To establish the role of c-FLIP(L) in T lymphocyte proliferation, we have generated a conditional knockout mouse strain specifically lacking c-FLIP(L) in T lymphocytes. c-FLIP(L)(-/-) mice exhibit severely impaired effector T cell development after Listeria monocytogenes infection in vivo and c-FLIP(L)-deficient T cells display defective TCR-mediated proliferation in vitro. However, c-FLIP(L)(-/-) T cells exhibit normal NF-kappaB activity upon TCR stimulation. These results demonstrate that c-FLIP(L) is essential for T lymphocyte proliferation through an NF-kappaB-independent pathway.  相似文献   

11.
12.
Although c-FLIP has been identified as an important player in the extrinsic (death receptor-induced) apoptosis pathway, its endogenous function in mature T lymphocytes remains undefined. c-FLIP may inhibit or promote T cell death as previous data demonstrate that the c-FLIP(L) isoform can promote or inhibit caspase 8 activation while the c-FLIP(S) isoform promotes or inhibits T cell death when overexpressed. Although the c-FLIP(R) isoform inhibits cell death in cell lines, its function in T cells remains unknown. To investigate the function of c-FLIP in mature T cells, we have generated several genetic mouse models with c-FLIP or its individual isoforms deleted in mature T cells. Surprisingly, we found that c-FLIP protects mature T cells not only from apoptosis induced by the death receptors Fas and TNFR but also from TCR-mediated and spontaneous apoptosis. Thus, c-FLIP plays an essential role in protecting mature T cells from a death signal induced through the TCR itself and is required for naive T cell survival. Our results demonstrate that c-FLIP functions beyond the extrinsic death pathway.  相似文献   

13.
Zhu DM  Shi J  Liu S  Liu Y  Zheng D 《PloS one》2011,6(4):e18291

Background

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) could induce apoptosis of HIV-1-infected monocyte-derived macrophage (MDM), but the molecular mechanisms are not well understood.

Methodology/Principal Findings

By using an HIV-1 Env-pseudotyped virus (HIV-1 PV)-infected MDM cell model we demonstrate that HIV-1 PV infection down-regulates the expression of TRAIL decoy receptor 1 (DcR1) and 2 (DcR2), and cellular FLICE-inhibitory protein (c-FLIP), but dose not affect the expression of death receptor 4 and 5 (DR4, DR5), and Bcl-2 family members in MDM cells. Furthermore, recombinant soluble TRAIL and an agonistic anti-DR5 antibody, AD5-10, treatment stimulates reactive oxygen species (ROS) generation and JNK phosphorylation.

Conclusions/Significance

HIV infection facilitates TRIAL-induced cell death in MDM by down-regulating the expression of TRAIL decoy receptors and intracellular c-FLIP. Meanwhile, the agonistic anti-DR5 antibody, AD5-10, induces apoptosis synergistically with TRAIL in HIV-1-infected cells. ROS generation and JNK phosphorylation are involved in this process. These findings potentiate clinical usage of the combination of TRAIL and AD5-10 in eradication of HIV-infected macrophage and AIDS.  相似文献   

14.
The activation of NF-kappaB inhibits apoptosis via a mechanism involving upregulation of various antiapoptotic genes, such as cellular FLICE-inhibitory protein (c-FLIP), Bcl-xL, A1/Bfl-1, and X chromosome-liked inhibitor of apoptosis (XIAP). In contrast, the activation of c-Jun N-terminal kinase (JNK) promotes apoptosis in a manner that is dependent on the cell type and the context of the stimulus. Recent studies have indicated that one of the antiapoptotic functions of NF-kappaB is to downregulate JNK activation. Further studies have also revealed that NF-kappaB inhibits JNK activation by suppressing accumulation of reactive oxygen species (ROS). In this review, we will focus on the signaling crosstalk between the NF-kappaB and JNK cascades via ROS.  相似文献   

15.
The expression levels of caspase-8 inhibitory c-FLIP proteins play an important role in regulating death receptor-mediated apoptosis, as their concentration at the moment when the death-inducing signaling complex (DISC) is formed determines the outcome of the DISC signal. Experimental studies have shown that c-FLIP proteins are subject to dynamic turnover and that their stability and expression levels can be rapidly altered. Even though the influence of c-FLIP on the apoptotic behavior of a single cell has been captured in mathematical simulation studies, the effect of c-FLIP turnover and stability has not been investigated. In this study, a mathematical model of apoptosis was developed to analyze how the dynamic turnover and stability of the c-FLIP isoforms regulate apoptotic signaling for both individual cells and cell populations. Intercellular parameter and concentration distributions were used to describe the behavior of cell populations. Monte-Carlo simulations of cell populations showed that c-FLIP turnover is a key determinant of death receptor responses. The fact that the developed model simulates the state of whole cell populations makes it possible to validate it by comparison with empirical data. The proposed modeling approach can be used to further determine limiting factors in the DISC signaling process.  相似文献   

16.
Thioridazine has been known as an antipsychotic agent, but it also has anticancer activity. However, the effect of thioridazine on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitization has not yet been studied. Here, we investigated the ability of thioridazine to sensitize TRAIL-mediated apoptosis. Combined treatment with thioridazine and TRAIL markedly induced apoptosis in various human carcinoma cells, including renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MDA-MB231), and glioma (U251MG) cells, but not in normal mouse kidney cells (TMCK-1) and human normal mesangial cells. We found that thioridazine downregulated c-FLIP(L) and Mcl-1 expression at the post-translational level via an increase in proteasome activity. The overexpression of c-FLIP(L) and Mcl-1 overcame thioridazine plus TRAIL-induced apoptosis. We further observed that thioridazine inhibited the Akt signaling pathway. In contrast, although other phosphatidylinositol-3-kinase/Akt inhibitors (LY294002 and wortmannin) sensitized TRAIL-mediated apoptosis, c-FLIP(L) and Mcl-1 expressions were not altered. Furthermore, thioridazine increased the production of reactive oxygen species (ROS) in Caki cells, and ROS scavengers (N-acetylcysteine, glutathione ethyl ester, and trolox) inhibited thioridazine plus TRAIL-induced apoptosis, as well as Akt inhibition and the downregulation of c-FLIP(L) and Mcl-1. Collectively, our study demonstrates that thioridazine enhances TRAIL-mediated apoptosis via the ROS-mediated inhibition of Akt signaling and the downregulation of c-FLIP(L) and Mcl-1 at the post-translational level.  相似文献   

17.
Death receptors trigger apoptosis by activating the apical cysteine proteases caspase-8 and -10 within a death-inducing signaling complex (DISC). c-FLIP (cellular FLICE inhibitory protein) is an enzymatically inactive relative of caspase-8 and -10 that binds to the DISC. Two major c-FLIP variants result from alternative mRNA splicing: a short, 26-kDa protein (c-FLIP(S)) and a long, 55-kDa form (c-FLIP(L)). The role of c-FLIP(S) as an inhibitor of death receptor-mediated apoptosis is well established; however, the function of c-FLIP(L) remains controversial. Although overexpression of transfected c-FLIP(L) inhibits apoptosis, ectopic expression at lower levels supports caspase-8 activation and cell death. Simultaneous ablation of both c-FLIP variants augments death receptor-mediated apoptosis, but the impact of selective depletion of c-FLIP(L) on caspase-8 activation and subsequent apoptosis is not well defined. To investigate this, we developed small interfering RNAs that specifically knock down expression of c-FLIP(L) in several cancer cell lines and studied their effect on apoptosis initiation by Apo2L/TRAIL (Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand). Knockdown of c-FLIP(L) augmented DISC recruitment, activation, processing, and release of caspase-8, thereby enhancing effector-caspase stimulation and apoptosis. Thus, endogenous c-FLIP(L) functions primarily as an inhibitor of death receptor-mediated apoptosis.  相似文献   

18.
c-FLIP proteins (isoforms: c-FLIP(L), c-FLIP(S), and c-FLIP(R)) play an essential role in the regulation of death receptor (DR)-induced apoptosis and NF-κB activation. Here, we discuss multiple mechanisms by which c-FLIPs control NF-κB activation and the life/death decision made in cancer and immune cells. We focus on the role of c-FLIP in cellular signaling. We concentrate on c-FLIP protein modifications as well as on the regulation of c-FLIP expression levels. Furthermore, we discuss in detail how the exact quantity and dynamics of different c-FLIP isoforms in the cell influence the induction of pro- versus anti-apoptotic pathways.  相似文献   

19.
20.
Cellular FLICE-inhibitory protein (c-FLIP) proteins are known as potent inhibitors of death receptor-mediated apoptosis by interfering with caspase-8 activation at the death-inducing signaling complex (DISC). Among the three human isoforms, c-FLIP(long), c-FLIP(short) and c-FLIP(R), the latter isoform is poorly characterized. We report here the characterization of murine c-FLIP(R) and show that it is the only short c-FLIP isoform expressed in mice. By generating several mutants, we demonstrate that both death effector domains (DEDs) are required for DISC binding and the antiapoptotic function of c-FLIP(R). Surprisingly, the C-terminal tail is important for both protein stability and DISC recruitment. Three-dimensional modeling of c-FLIP(R) revealed a substantial similarity of the overall structures and potential interaction motifs with the viral FLIP MC159. We found, however, that c-FLIP(R) uses different structural motifs for its DISC recruitment. Whereas MC159 interferes with interaction and self-oligomerization of the DISC component FADD by its extensive hydrophilic surface, a narrow hydrophobic patch of c-FLIP(R) on the surface of DED2 is crucial for DISC association. Thus, despite the presence of similar tandem DEDs, viral and cellular FLIPs inhibit apoptosis by remarkably divergent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号