首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantification of aspartic acid enantiomers in rat brain by using a chiral capillary electrophoresis procedure is described. Amino acids were pre-column derivatized with naphthalene-2,3-dialdehyde. Enantiomeric separation was achieved by micellar electrokinetic chromatography in the presence of methanol and β-cyclodextrin as chiral selector. The chiral separation was coupled with laser-induced fluorescence detection. Contents of d- and l-aspartic acids in rats at different stages of growth (from 1 day before birth to 90 days after birth) were determined. d-Aspartic acid was detected in all the brain tissue samples tested, but at different levels. In the cerebrum of rats 1 day before birth, d-aspartic acid was found to be at the highest concentration of 81 nmol/g wet tissue. The level of d-aspartic acid in rat brain falls rapidly after birth, while the l-aspartic acid level increases with age.  相似文献   

2.
The purpose of this study was to develop a simple and accurate analytical method to determine amino acids in urine samples. The developed method involves the employment of an extract derivatization technique together with gas chromatography-mass spectrometry (GC-MS). Urine samples (300 microl) and an internal standard (10 microl) were placed in a screw tube. Ethylchloroformate (50 microl), methanol-pyridine (500 microl, 4:1, v/v) and chloroform (1 ml) were added to the tube. The organic layer (1 microl) was injected to a GC-MS system. In this proposed method, the amino acids in urine were derivatized during an extraction, and the analytes were then injected to GC-MS without an evaporation of the organic solvent extracted. Sample preparation was only required for ca. 5 min. The 15 amino acids (alanine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, tryptophan, valine) quantitatively determined in this proposed method. However, threonine, serine, asparagine, glutamine, arginine were not derivatized using any tested derivatizing reagent. The calibration curves showed linearity in the range of 1.0-300 microg/ml for each amino acid in urine. The correlation coefficients of the calibration curves of the tested amino acids were from 0.966 to 0.998. The limit of detection in urine was 0.5 microg/ml except for aspartic acid. This proposed method demonstrated substantial accuracy for detection of normal levels. This proposed method was limited for the determination of 15 amino acids in urine. However, the sample preparation was simple and rapid, and this method is suitable for a routine analysis of amino acids in urine.  相似文献   

3.
For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance.  相似文献   

4.
A stereoselective bioanalytical method for the simultaneous quantification of the enantiomers of verapamil and its active main metabolite norverapamil in human plasma has been developed and validated. The samples were analysed by liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) in the Selected Reaction Monitoring (SRM) mode using a deuterated internal standard. The stationary phase used for the chiral separation was a Chiral-AGP. The enantiomers of verapamil were selectively detected from those of norverapamil by the mass spectrometer due to different molecular masses, although there was a chromatographic co-elution. Thus, time-consuming procedures like achiral preseparation or chemical derivatisation could be avoided. Higher detection sensitivity than earlier published methods based on fluorescence detection was obtained, although a mobile phase of high water-content and high flow-rate was introduced into the electrospray interface (85% aqueous ammonium acetate pH 7.4 +15% acetonitrile at 0.6 ml/min). The enantiomers of verapamil and norverapamil could be quantified at levels down to 50 pg and 60 pg/500 microl plasma sample, respectively, with R.S.D. in the range of 3.6-7.8%. The presented method was successfully applied to an in vivo intestinal absorption and bioavailability study in humans, using the Loc-I-Gut method.  相似文献   

5.
A method is described for the quantitative determination of d- and L-lactate in 10 microl of rat serum, which includes fluorescence derivatization of D- and L-lactate with 4-(N, N-dimethylaminosulfonyl)-7-piperazino-2,1,3- benzoxadiazole (DBD-PZ) followed by O-acetylation. The derivatives are separated by HPLC on an octadecylsilica, and, via column switching, on a cellulose-type chiral column. Levulinic acid was used as the internal standard. The enantiomers of lactate were separated with the separation factor (alpha) of 1.27 and the resolution (Rs) of 2.72, while the linearity for the detection was over the range of 10 nmol/ml to 20 micromol/ml (r = 0.999). Interday precision values for D-lactate in rat serum were 5.8, 5.3, and 4.1% for 10, 100, and 1000 nmol/ml, and accuracy values were 109.6, 98.2, and 103.1%, respectively (n = 5). The reduction of d-lactate concentration in rat serum by fasting was observed with the method.  相似文献   

6.
E-6087 is a nonsteroidal anti-inflammatory compound that selectively inhibits cyclooxygenase-2. Because E-6087 has a chiral center, this compound is a racemic mixture of two stereoisomers, (+)-(R)-E-6087 (E-6231) and (-)-(S)-E-6087 (E-6232). A normal-phase liquid-chromatographic method for the enantioselective determination of E-6087 in human plasma was developed and validated. The samples were extracted using solid-phase extraction cartridges containing C(18) sorbent, and the extracts were redissolved in absolute ethanol and injected into the chromatographic system. The enantiomeric separation was achieved on a chiral stationary-phase column of derivatized amylose, and the enantiomers were quantified by fluorescence detection. The method was validated for drug concentrations ranging from 5 to 400 ng/ml for both enantiomers. No peaks interfering with the quantification of enantiomers were observed. The limit of quantification was 5 ng/ml, with precision expressed as a coefficient of variation lower than 10.6% and accuracy expressed as relative error lower than 12.2%. The utility of this method was demonstrated by analysis of plasma samples from healthy volunteers given an oral dose of rac-E-6087. Peak plasma levels of E-6231 were higher than levels obtained for E-6232. Results were consistent with those obtained with a conventional reversed-phase method used for determination of the racemic compound.  相似文献   

7.
An indirect reversed‐phase high‐performance liquid chromatographic separation and fluorescence detection of sitagliptin enantiomers in rat plasma was developed and validated. Deproteinized rat plasma containing racemic sitagliptin was derivatized with o‐phthalaldehyde and N‐acetyl‐L‐cysteine under alkaline conditions, converted to diastereomers, and separated on a Lichrospher 100 RP‐18e column using 20 mM phosphate buffer and methanol (45:55 v/v) as a mobile phase under isocratic mode of elution at a flow rate of 1.0 mL/min. Fluorescence detection was performed at 330 and 450 nm as excitation and emission wavelengths, respectively. The method was linear in the range of 50–5000 ng/ mL for both enantiomers. The intra‐ and interday accuracy and precision were within the predefined limits of ≤15% at all concentrations. The method was successfully applied to a pharmacokinetic study of sitagliptin after 5 mg/kg oral administration to Wistar rats. Robustness of the method was evaluated using design of experiments. Chirality 25:883–889, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
A sensitive method was developed for the simultaneous determination of six adenyl purines in human plasma by high-performance liquid chromatography. The adenyl purines (adenine, adenosine, AMP, ADP, ATP and cyclic AMP) were derivatized using 2-chloroacetaldehyde for fluorescence detection, and the reaction and separation conditions were reinvestigated to improve sensitivity for small volume sample analysis. Each derivatized purine was separated on a Capcell Pack SG120A™ column with mobile phase consisting of 0.05 M citric acid–0.1 M dipotassium hydrogen phosphate (pH 4.0)–methanol (97+3). The detection limits were 100–1000 fmol/ml by fluorescence detection, some 500 times better than previous reports. The proposed method was applied to determine adenyl purines in human plasma. The purine levels were as follows: ATP (9.2–22.2 pmol/ml), ADP (5.5–22.2 pmol/ml), AMP (0.8–3.2 pmol/ml). Other purines, adenine, adenosine, cAMP were lower than 0.1 pmol/ml.  相似文献   

9.
We established a sensitive and simultaneous determination method of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) using HPLC-fluorescence detection. This method adopted the column-switching system, which included an on-line extraction of carboxylic acids by a strong anion-exchange column followed by separation on an ODS column, coulometric oxidation, fluorogenic reaction with ethylenediamine, and fluorescence detection. The detection limits were 50 and 100 fmol/injection for DOPAC and HVA, respectively (a signal-to-noise ratio of 3). The method was applicable to 50 microl of rat kidney microdialysate with a sufficient accuracy and precision. The concentrations of DOPAC and HVA in rat kidney microdialysate were 131+/-29 and 404+/-44 nM, respectively (n=5). This is the first report of DOPAC and HVA quantified in rat kidney microdialysate.  相似文献   

10.
A stereoselective HPLC assay has been developed to analyze the enantiomers of citalopram and of its three main metabolites in plasma after their separation on a Chiracel OD column. Using a fluorescence detector, the limit of quantification in plasma samples was 15, 4, 5, and 2 ng/ml for the enantiomers of citalopram (CIT), desmethylcitalopram (DCIT), didesmethylcitalopram (DDCIT), and for the citalopram propionic acid derivative (CIT-PROP), respectively. Except for CIT, all metabolites were derivatized with achiral reagents. Identification of the enantiomers was realized with an optical rotation detector which showed that the enantiomers invert their rotation depending on the polarity and nature of the solvent. Under varying conditions, a racemization study has shown that the pure enantiomers of CIT and its demethylated metabolites are configurationally stable. Preliminary results obtained with five patients treated with CIT show a mean S/R ratio of 0.7 for both CIT and its active metabolite DCIT and of 3.6 for CIT-PROP in plasma. This suggests that the pharmacologically relevant (+)-(S)-isomers of CIT and DCIT could be preferentially and steroselectively metabolized to CIT-PROP. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Two liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods are described, one for the quantitative determination of risperidone and the enantiomers of its active metabolite 9-hydroxyrisperidone (paliperidone) in human plasma and the other for the determination of the enantiomers of 9-hydroxyrisperidone in human urine. The plasma method is based on solid-phase extraction of 200 microl of sample on a mixed-mode sorbent, followed by separation on a cellulose-based LC column with a 13.5-min mobile phase gradient of hexane, isopropanol and ethanol. After post-column addition of 10 mM ammonium acetate in ethanol/water, detection takes place by ion-spray tandem mass spectrometry in the positive ion mode. Method validation results show that the method is sufficiently selective towards the enantiomers of 7-hydroxyrisperidone and capable of quantifying the analytes with good precision and accuracy in the concentration range of 0.2-100 ng/ml. An accelerated (run time of 4.3 min) and equally valid method for the enantiomers of 9-hydroxyrisperidone alone in plasma is obtained by increasing the mobile phase flow-rate from 1.0 to 2.0 ml/min and slightly adapting the gradient conditions. The urine method is based on the same solid-phase extraction and chromatographic approach as the accelerated plasma method. Using 100 microl of sample, (+)- and (-)-9-hydroxyrisperidone can be quantified in the concentration range 1-2000 ng/ml. The accelerated method for plasma and the method for urine can be used only when paliperidone is administered instead of risperidone, as there is insufficient separation of the 9-hydroxy enantiomers from the 7-hydroxy enantiomers, the latter ones being present only after risperidone administration.  相似文献   

12.
Chen  FT; Dobashi  TS; Evangelista  RA 《Glycobiology》1998,8(11):1045-1052
A method for quantitative analysis of monosaccharides including N- acetylneuraminic acid derived from sialic acid-containing oligosaccharides and glycoproteins is presented. The analysis is based on the combination of chemical and enzymatic methods coupled with capillary electrophoretic (CE) separation and laser-induced fluorescence (LIF) detection. The present method utilizes a simplified acid hydrolysis procedure consisting of mild hydrolysis (0.1 M TFA) to release sialic acid and strong acid hydrolysis (2.0 N TFA) to produce amino and neutral sugars. Amino sugars released from strong acid hydrolysis of oligosaccharides and glycoproteins were reacetylated and derivatized with 8-aminopyrene-1,3,6-trisulfonate (APTS) along with neutral sugars in the presence of sodium cyanoborohydride to yield quantitatively the highly stable fluorescent APTS adducts. N- acetylneuraminic acid (Neu5Ac), a major component of most mammalian glycoproteins, was converted in a fast specific reaction by the action of neuraminic acid aldolase (N-acylneuraminate pyruvate-lyase EC 4.1.3.3) to N-acetylmannosamine (ManNAc) and pyruvate. ManNAc was then derivatized with APTS in the same manner as the other monosaccharides. This method was demonstrated for the quantitation of pure Neu5Ac and the species derived from mild acid hydrolysis of 6'-sialyl-N- acetyllactosamine and bovine fetuin glycan. Quantitative recovery of the N-acetylmannosamine was obtained from a known amount of Neu5Ac in a mixture of seven other monosaccharides or from the sialylated oligosaccharides occurring in glycoproteins. The sequence of procedures consists of acid hydrolysis, enzymatic conversion and APTS derivatization which produced quantitative recovery of APTS- monosaccharide adducts. The detection limits for sugars derivatized with APTS and detected by CE-LIF are 100 pmol for Neu5Ac and 50 pmol for the other sugars.   相似文献   

13.
A high performance capillary electrophoresis (HPCE) method was presented to identify and quantitate free amino acids during fermentation by Bacillus subtilis. Amino acids, pre-column derivatized with phenylisothicyanate, were separated and characterized by HPCE. In order to optimize separation conditions, the assay was developed by varying the β-cyclodextrin concentration and pH of the background electrolyte. A buffer system comprising 30 mM phosphate and 3 mM β-cyclodextrin at pH 7.0, voltage of 20 kV and detection wavelength of 254 nm showed the best results, with 17 out of 20 phenylthioncarbamyl amino acids in a solution adequately separated. For quantification, p-aminobenzoic acid was added as an internal standard. Analysis of free amino acids in Bacillus subtilis culture medium using this method revealed good consistency with the values obtained using conventional ninhydrin-based amino acid analyzer. Four free amino acids (aspartic acid, glutamic acid, proline, and tyrosine) concentration in an extracellular matrix during fermentation by Bacillus subtilis were mainly monitored using this method.  相似文献   

14.
A stereoselective RP-high performance liquid chromatography (HPLC) assay to determine simultaneously the enantiomers of esmolol and its acid metabolite in human plasma was developed. The method involved a solid-phase extraction and a reversed-phase chromatographic separation with UV detection (lambda = 224 nm) after chiral derivatization. 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl isothiocyanate (GITC) was employed as a pre-column chiral derivatization reagent. The assay was linear from 0.09 to 8.0 microg/ml for each enantiomer of esmolol and 0.07-8.0 microg/ml for each enantiomer of the acid metabolite. The absolute recoveries for all enantiomers were >73%. The intra- and inter-day variations were <15%. The validated method was applied to quantify the enantiomers of esmolol and its metabolite in human plasma for hydrolysis studies.  相似文献   

15.
The capillary electrophoresis (CE) system with optical fiber light-emitting diode (optical fiber LED) induced fluorescence detector was developed for the analysis of the excitatory amino acids (EAAs) tagged with naphthalene-2,3-dicarboxaldehyde (NDA). The separation of EAAs was carried out in an uncoated fused-silica capillary (50 cm x 75 microm i.d.) with a buffer of 10 mM borate at pH 9.3 and an applied voltage of 20 kV. High sensitivity was obtained by the use of optical fiber LED induced fluorescence detector with a violet LED as the excitation light source. The limits of detection (S/N = 3) for glutamic acid (Glu) and aspartic acid (Asp) were 2.1 x 10(-8) and 2.3 x 10(-8) M, respectively. The detection approach was successfully applied to the analysis of Glu and Asp in biological fluids including human serum, rabbit serum and human cerebrospinal fluid (CSF) with satisfactory results.  相似文献   

16.
In this work we describe a sensitive method for the detection of 4,5-dioxovaleric acid (DOVA). 4,5-Dioxovaleric acid is derivatized with 2,3-diaminonaphthalene to form 3-(benzoquinoxalinyl-2)propionic acid (BZQ), a product with favorable UV absorbance and fluorescence properties. The high-performance liquid chromatographic method with UV absorbance and fluorescence detection is simple and its detection limit is approximately 100 fmol. This method was used to detect 4,5-dioxovaleric acid formation during metal-catalyzed 5-aminolevulinic acid (ALA) oxidation. Iron and ferritin were active in the formation of 4,5-dioxovaleric acid in the presence of 5-aminolevulinic acid. In addition, HPLC–MS–MS assay was used to characterize BZQ. The determination of 4,5-dioxovaleric acid is of great interest for the study of the mechanism of the metal-catalyzed damage of biomolecules by 5-aminolevulinic acid. This reaction may play a role in carcinogenesis after lead intoxication. The high frequency of liver cancer in acute intermittent porphyria patients may also be due to this reaction.  相似文献   

17.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    A rapid and simple method is presented for the determination of vigabatrin enantiomers in human serum by high-performance liquid chromatography. Serum is deproteinized with trichloroacetic acid and aliquots of the supernatant are precolumn derivatized with o-phthaldialdehyde and N-acetyl- -cysteine, resulting in the formation of diastereomeric isoindoles. Separation was achieved on a Spherisorb 3ODS2 column using a gradient solvent program and the column eluent is monitored using fluorescence detection. -Homoarginine was used as an internal standard. Within-day precisions (C.V.; n=8) were 2.8 and 1.1%, respectively, for the (R)-(−)- and (S)-(+)-enantiomer in serum containing 15.4 mg/l (RS)-vigabatrin. The method was linear in the 0–45 mg/l range for both enantiomers and the minimum quantitation limit was 0.20 mg/l for (R)-(−)-vigabatrin and 0.14 mg/l for (S)-(+)-vigabatrin. No interferences were found from commonly co-administered antiepileptic drugs and from endogenous amino acids. The method is suitable for routine therapeutic drug monitoring and for pharmacokinetic studies.  相似文献   

    19.
    A novel method for chiral identification of glutamine enantiomers based on chiral carbon quantum dots (cCQDs) fluorescent probes. cCQDs were prepared using a one-step hydrothermal method with L-tryptophan as the carbon source and chiral source, producing spherical nanoparticles exhibiting a blue colour luminescence. The fluorescence intensity (F) of cCQDs was enhanced or quenched following the addition of chiral enantiomeric glutamine (L/D-Gln), and therefore cCQDs, as a fluorescence probe, could be used for enantioselective sensing of the L/D-Gln. The fluorescence enhancement value (∆FE) exhibited good linearity with L-Gln concentration in the range 0.23–10.00 mM, and the limit of detection was 0.14 mM. The fluorescence quenching value (∆FQ) showed a good linear relationship with D-Gln concentration in the range 0.29–10.00 mM, and the detection limit was 0.18 mM. The mechanism of fluorescence enhancement/quenching was explored by molecular modelling and the type of quenching. The method was applied to the determination of L-Gln content in real samples, and the recovery rate was satisfactory. This study provided a novel approach for the synthesis of cCQDs and the recognition of amino acid enantiomers.  相似文献   

    20.
    Isoniazid (IN), pyrazinamide (Pz) and rifampicin (Rf) are separated on YMC-ODS column. IN was derivatized with 2-fluorene-carboxaldehyde (FA). The separation was achieved using ethanol-chloroform-acetonitrile water by isocratic elution and detected at 337 nm. The detection limits were 0.11 ng, 0.2 ng and 13 ng/injection (5 microl) for IN, Pz and Rf, respectively. The method of analysis was applied to the pharmaceutical preparations and in the blood samples of the patients suffering from tuberculosis after undergoing chemotherapy with IN, Pz and Rf. The amounts quantitated in blood showed 0.97 to 1.58 microg/ml IN, 3.44 to 4.09 microg/ml Pz and 1.98 to 3.5 microg/ml Rf with coefficient of variations 0.8-1.8%, 0.9-1.3% and 0.8-2.1%, respectively.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号