首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G protein-coupled receptors (GPCRs) accommodate a wide spectrum of activators from ions to glycoprotein hormones. The mechanism of activation for this large and clinically important family of receptors is poorly understood. Although initially thought to function as monomers, there is a growing body of evidence that GPCR dimers form, and in some cases that these dimers are essential for signal transduction. Here we describe a novel mechanism of intermolecular GPCR activation, which we refer to as trans-activation, in the LH receptor, a GPCR that does not form stable dimers. The LH receptor consists of a 350-amino acid amino-terminal domain, which is responsible for high-affinity binding to human CG, followed by seven-transmembrane domains and connecting loops. This seven-transmembrane domain bundle transmits the signal from the extracellular amino terminus to intracellular G proteins and adenylyl cyclase. Here, we show that binding of hormone to one receptor can activate adenylyl cyclase through its transmembrane bundle, intramolecular activation (cis-activation), as well as trans-activation through the transmembrane bundle of an adjacent receptor, without forming a stable receptor dimer. Coexpression of a mutant receptor defective in hormone binding and another mutant defective in signal generation rescues hormone-activated cAMP production. Our observations provide new insights into the mechanism of receptor activation mechanisms and have implications for the treatment of inherited disorders of glycoprotein hormone receptors.  相似文献   

2.
Oppermann M 《Cellular signalling》2004,16(11):1201-1210
CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. It also serves as the main coreceptor for the entry of R5 strains of human immunodeficiency virus (HIV-1, HIV-2). Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways. Like many other GPCR, CCR5 is regulated by agonist-dependent processes which involve G protein coupled receptor kinase (GRK)-dependent phosphorylation, beta-arrestin-mediated desensitization and internalization. This review discusses recent advances in the elucidation of the structure and function of CCR5, as well as the complex mechanisms that regulate CCR5 signalling and cell surface expression.  相似文献   

3.
The G protein-coupled receptor (GPCR) family comprises the largest class of cell surface receptors found in metazoan proteomes. Within the novel GPCR subfamily of adhesion-GPCRs, approximately 150 distinct orthologues, from invertebrates to mammals, have been identified to date. All members of this family contain a large extracellular region, often containing common protein modules, coupled to a seven-transmembrane domain via a stalk region that seems to be crucial for functionality. Owing to their unique structure, restricted expression profile and involvement in several human diseases, adhesion-GPCRs have long been proposed to have vital dual roles in cellular adhesion and signalling. More recent studies have provided structural, evolutionary, developmental and immunological insights in relation to the adhesion-GPCR family.  相似文献   

4.
G protein coupled receptor (GPCR) signalling is mediated by transactivation independent and transactivation dependent pathways. GPCRs transactivate protein tyrosine kinase receptors (PTKRs) and protein serine/threonine kinase receptors (PS/TKR). Since the initial observations of transactivation dependent signalling, there has been an effort to understand the mechanisms behind this phenomena. GPCR signalling has evolved to include biased signalling. Biased signalling, whereby selected ligands can activate the same GPCR that can generate multiple signals, but drive only a unique response. To date, there has been no focus on the ability of biased agonists to activate the PTKR and PS/TKR transactivation pathways differentially. As such, this represents a novel direction for future research. This review will discuss the main mechanisms of GPCR mediated receptor transactivation and the pathways involved in intracellular responses.  相似文献   

5.
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor’s structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.  相似文献   

6.
Two independent gain-of-function point mutations (S252W and P253R) in the extracellular region of the FGFR2 (fibroblast growth factor receptor 2) increase the binding affinity for the growth factor. The effect of this enhanced growth factor binding by these mutants is expected to be an increase in activation of regular signalling pathways from FGFR2 as a result of more receptors being engaged by ligand at any given time. Using PC12 (pheochromocytoma) cells as a model cell system we investigated the effect of these mutations on protein phosphorylation including the receptor, the activation of downstream signalling pathways and cell differentiation. Our results show that the effects of both of these extracellular mutations have unexpected intracellular phenotypes and cellular responses. Receptor phosphorylation was altered in both the ligand-stimulated and unstimulated states. The mutants also resulted in differential phosphorylation of a number of intracellular proteins. Both mutations resulted in enhanced ERK1/2 (extracellular-signalregulated kinase1/2) activation. Although ERK1/2 activation is believed to transduce signals resulting in cell differentiation, this response was abrogated in the cells expressing the mutant receptors. The results of the present study demonstrate that single extracellular point mutations in the FGFR2 have a profound effect on intracellular signalling and ultimately on cell fate.  相似文献   

7.
Peter J. Little 《Life sciences》2013,92(20-21):951-956
GPCR signalling is well known to proceed through several linear pathways involving activation of G proteins and their downstream signalling pathways such as activation of phospholipase C. In addition, GPCRs signal via transactivation of Protein Tyrosine Kinase receptors such as that for Epidermal Growth Factor (EGF) and Platelet-Derived Growth Factor (PDGF) where GPCR agonists mediate increase levels of phosphorylated Erk (pErk) the immediate downstream product of the activation of EGF receptor. It has recently been shown that this paradigm can be extended to include the GPCR transactivation of a Protein Serine/Threonine Kinase receptor, specifically the Transforming Growth Factor β Type I receptor (also known as Alk V) (TβRI) in which case GPCR activation leads to the formation of carboxy terminal polyphosphorylated Smad2 (phosphoSmad2) being the immediate downstream product of the activation of TβRI. Growth factor and hormone regulation of proteoglycan synthesis in vascular smooth muscle cells represent one component of an in vitro model of atherosclerosis because modified proteoglycans show enhanced binding to lipoproteins as the initiating step in atherosclerosis. In the example of proteoglycan synthesis stimulated by GPCR agonists such as thrombin and endothelin-1, the transactivation pathways for the EGF receptor and TβRI are both active and together account for essentially all of the response to the GPCRs. In contrast, signalling downstream of GPCRs such as increased inositol 1,4,5 trisphosphate (IP3) and intracellular calcium do not have any effect on GPCR stimulated proteoglycan synthesis. These data lead to the conclusion that dual transactivation pathways for protein tyrosine and serine/threonine kinase receptors may play a far greater role in GPCR signalling than currently recognised.  相似文献   

8.
Ward DT 《Cell calcium》2004,35(3):217-228
As a G protein-coupled receptor (GPCR), the extracellular calcium-sensing receptor (CaR) responds to changes in extracellular free calcium concentration by inducing intracellular signalling. These CaR-induced signals then specifically modulate cellular functions such as parathyroid hormone secretion from the parathyroid glands and calcium reabsorption in the kidney and thus to understand how the CaR functions one must understand how it signals. CaR-induced signalling involves intracellular Ca2+ mobilisation/oscillations as well as the activation of various phospholipases and protein kinases and the suppression of cAMP formation. This review will detail the intracellular pathways by which the CaR is believed to elicit its physiological functions and summarises the evidence for cell- and agonist-specific differential signalling.  相似文献   

9.
The interaction of the CC-chemokine RANTES with its cell surface receptors transduces multiple intracellular signals: low concentrations of RANTES (1 to 10 nM) stimulate G-protein-coupled receptor (GPCR) activity, and higher concentrations (1 microM) activate a phosphotyrosine kinase (PTK)-dependent pathway. Here, we show that the higher RANTES concentrations induce rapid tyrosine phosphorylation of multiple proteins. Several src-family kinases (Fyn, Hck, Src) are activated, as is the focal adhesion kinase p125 FAK and, eventually, members of the p44/p42 mitogen-activated protein kinase (MAPK) family. This PTK signaling pathway can be activated independently of known seven-transmembrane GPCRs for RANTES because it occurs in cells that lack any such RANTES receptors. Instead, activation of the PTK signaling pathway is dependent on the expression of glycosaminoglycans (GAGs) on the cell surface, in that it could not be activated by RANTES in GAG-deficient cells. We have previously demonstrated that RANTES can both enhance and inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). Here we show that activation of both PTK and MAPK is involved in the enhancement of HIV-1 infectivity caused by RANTES in cells that lack GPCRs for RANTES but which express GAGs.  相似文献   

10.
Many cellular functions are carried out by multiprotein complexes. The last five years of research have revealed that many G-protein coupled receptor (GPCR) functions that are not mediated by G proteins involve protein networks, which interact with their intracellular domains. This review focuses on one family of GPCRs activated by serotonin, the 5-HT(2) receptor family, which comprises three closely related subtypes, the 5-HT(2A), the 5-HT(2B) and the 5-HT(2c) receptors. These receptors still raise particular interest, because a large number of psychoactive drugs including hallucinogens, anti-psychotics, anxiolytics and anti-depressants, mediate their action, at least in part, through activation of 5-HT(2) receptors. Recent studies based on two-hybrid screens, proteomic, biochemical and cell biology approaches, have shown that the C-terminal domains of 5-HT(2) receptors interact with intracellular proteins. To date, the protein network associated with the C-terminus of the 5-HT(2C) receptor has been the most extensively characterized, using a proteomic approach combining affinity chromatography, mass spectrometry and immunoblotting. It includes scaffolding proteins containing one or several PDZ domains, signalling proteins and proteins of the cytoskeleton. Data indicating that the protein complexes interacting with 5-HT(2) receptor C-termini tightly control receptor trafficking and receptor-mediated signalling will also be reviewed.  相似文献   

11.
A number of unusual seven-transmembrane molecules have recently been characterized that have significant amino acid sequence similarity within the membrane-spanning hydrophobic regions and intervening loops to members of G-protein-coupled receptor family B. However, in contrast to the family-B G-protein-coupled receptors, these molecules have unusually large N-terminal extracellular domains that contain a number of well- characterized protein modules. The range of cell types expressing these complex molecules and their potential roles in cell adhesion and signalling have become a major focus of research in a number of biological systems.  相似文献   

12.
The critical involvement of GPCRs (G-protein-coupled receptors) in nearly all physiological processes, and the presence of these receptors at the interface between the extracellular and the intracellular milieu, has positioned these receptors as pivotal therapeutic targets. Although a large number of drugs targeting GPCRs are currently available, significant efforts have been directed towards understanding receptor properties, with the goal of identifying and designing improved receptor ligands. Recent advances in GPCR pharmacology have demonstrated that different ligands binding to the same receptor can activate discrete sets of downstream effectors, a phenomenon known as 'ligand-directed signal specificity', which is currently being explored for drug development due to its potential therapeutic advantage. Emerging studies suggest that GPCR responses can also be modulated by contextual factors, such as interactions with other GPCRs. Association between different GPCR types leads to the formation of complexes, or GPCR heteromers, with distinct and unique signalling properties. Some of these heteromers activate discrete sets of signalling effectors upon activation by the same ligand, a phenomenon termed 'heteromer-directed signalling specificity'. This has been shown to be involved in the physiological role of receptors and, in some cases, in disease-specific dysregulation of a receptor effect. Hence targeting GPCR heteromers constitutes an emerging strategy to select receptor-specific responses and is likely to be useful in achieving specific beneficial therapeutic effects.  相似文献   

13.
G protein-coupled receptors (GPCRs) are involved in cell recognition and signaling and their function has been experimentally determined by ligand activation and site-directed mutagenesis. Structurally, GPCRs consist of an extracellular N-terminus and an intracellular C-terminus separated by seven helical transmembrane domains (TM7). The extracellular region is highly glycosylated. The intracellular region binds to G proteins. An epididymal GPCR, designated HE6 (for human epididymis-specific protein 6), is present in the stereocilia projecting from the apical domain of principal cells into the epididymal lumen. In conceptual terms, HE6 wears two hats: an unusually long extracellular region characteristic of cell adhesion proteins, and an intracellular region with binding affinity to G protein. The binding partner to the long extracellular region has not been identified. HE6 has another remarkable feature comparable to the GPCR calcium-independent receptor of alpha-latrotoxin, designated CIRL. Both HE6 and CIRL are endogenously cleaved into two pieces at the GPCR proteolytic site (GPS) located adjacent to TM1, the first of the seven transmembrane helices. One fragment of the heterodimer wears the cell adhesion hat; the other retains the typical characteristics of GPCRs. This proteolytic processing may be regarded as a mechanism of molecular compartmentalization of cell adhesion and G protein activation functions. The latter may engage a beta-arrestin-driven endocytic trafficking mechanism independent from the adhesive properties of the mucin extracellular domain. It is also conceivable that events taking place in the epididymal lumen can be surveyed by the long adhesive rod and subsequently coupled inside principal cells to a signaling cascade.  相似文献   

14.
RAGE is a multi-ligand receptor involved in various human diseases including diabetes, cancer or Alzheimer's disease. Engagement of RAGE by its ligands triggers activation of key cellular signalling pathways such as the MAP kinase and NF-kappaB pathways. Whereas the main isoform of RAGE is a transmembrane receptor with both extra- and intracellular domains, a secreted soluble isoform (sRAGE), corresponding to the extracellular part only, has the ability to block RAGE signalling and suppress cellular activation. Administration of sRAGE to animal models of cancer or multiple sclerosis blocked successfully tumour growth and the course of the autoimmune disease. These findings demonstrate that sRAGE may have a potential as therapeutic. We present here a fast and simple purification protocol of sRAGE from the yeast Pichia pastoris. The identity of the protein was confirmed by mass spectrometry and Western blot. The protein was N-glycosylated and 95-98% pure as judged by SDS-PAGE.  相似文献   

15.
Both thromboxane (TX) A(2) and 8-epi prostaglandin (PG) F(2alpha) have been reported to stimulate mitogenesis of vascular smooth muscle (SM) in a number of species. However, TXA(2) and 8-epiPGF(2alpha) mediated mitogenic signalling has not been studied in detail in human vascular SM. Thus, using the human uterine ULTR cell line as a model, we investigated TXA(2) receptor (TP) mediated mitogenic signalling in cultured human vascular SMCs. Both the TP agonist U46619 and 8-epiPGF(2alpha) elicited time and concentration dependent activation of the extracellular signal regulated kinase (ERK)s and c-Jun N-terminal kinase (JNK)s in ULTR cells. Whereas the TP antagonist SQ29548 abolished U46619 mediated signalling, it only partially inhibited 8-epiPGF(2alpha) mediated ERK and JNK activation in ULTR cells. Both U46619 and 8-epiPGF(2alpha) induced ERK activations were inhibited by the protein kinase (PK) C, PKA and phosphoinositide 3-kinase inhibitors GF109203X, H-89 and wortmannin, respectively, but were unaffected by pertussis toxin. In addition, U46619 mediated ERK activation in ULTR cells involves transactivation of the epidermal growth factor (EGF) receptor. In humans, TXA(2) signals through two distinct TP isoforms. In investigating the involvement of the TP isoforms in mitogenic signalling, both TPalpha and TPbeta independently directed U46619 and 8-epiPGF(2alpha) mediated ERK and JNK activation in human embryonic kidney (HEK) 293 cells over-expressing the individual TP isoforms. However, in contrast to that which occurred in ULTR cells, SQ29548 abolished 8-epiPGF(2alpha) mediated ERK and JNK activation through both TPalpha and TPbeta in HEK 293 cells providing further evidence that 8-epiPGF(2alpha) may signal through alternative receptors, in addition to the TPs, in human uterine ULTR cells.  相似文献   

16.
Spinophilin/neurabin 2 has been isolated independently by two laboratories as a protein interacting with protein phosphatase 1 (PP1) and F-actin. Gene analysis and biochemical approaches have contributed to define a number of distinct modular domains in spinophilin that govern protein-protein interactions such as two F-actin-, three potential Src homology 3 (SH3)-, a receptor- and a PP1-binding domains, a PSD95/DLG/zo-1 (PDZ) and three coiled-coil domains, and a potential leucine/isoleucine zipper (LIZ) motif. More than 30 partner proteins of spinophilin have been discovered, including cytoskeletal and cell adhesion molecules, enzymes, guanine nucleotide exchange factors (GEF) and regulator of G-protein signalling protein, membrane receptors, ion channels and others proteins like the tumour suppressor ARF. The physiological relevance of some of these interactions remains to be demonstrated. However, spinophilin structure suggests that the protein is a multifunctional protein scaffold that regulates both membrane and cytoskeletal functions. Spinophilin plays important functions in the nervous system where it is implicated in spine morphology and density regulation, synaptic plasticity and neuronal migration. Spinophilin regulates also seven-transmembrane receptor signalling and may provide a link between some of these receptors and intracellular mitogenic signalling events dependent on p70(S6) kinase and Rac G protein-GEF. Strikingly a role for spinophilin in cell growth was demonstrated and this effect was enhanced by its interaction with ARF. Here we review the current knowledge of the protein partners of spinophilin and present the available data that are contributing to the appreciation of spinophilin functions.  相似文献   

17.
In the classical model of G-protein-coupled receptor (GPCR) regulation, arrestins terminate receptor signalling. After receptor activation, arrestins desensitize phosphorylated GPCRs, blocking further activation and initiating receptor internalization. This function of arrestins is exemplified by studies on the role of arrestins in the development of tolerance to, but not dependence on, morphine. Arrestins also link GPCRs to several signalling pathways, including activation of the non-receptor tyrosine kinase SRC and mitogen-activated protein kinase. In these cascades, arrestins function as adaptors and scaffolds, bringing sequentially acting kinases into proximity with each other and the receptor. The signalling roles of arrestins have been expanded even further with the discovery that the formation of stable receptor-arrestin complexes initiates photoreceptor apoptosis in Drosophila, leading to retinal degeneration. Here we review our current understanding of arrestin function, discussing both its classical and newly discovered roles.  相似文献   

18.
The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing.  相似文献   

19.
Thromboxane (TX) A(2) plays a central role in hemostasis, regulating platelet activation status and vascular tone. We have recently established that the TP beta isoform of the human TXA(2) receptor (TP) undergoes rapid, agonist-induced homologous desensitization of signalling largely through a G protein-coupled receptor kinase (GRK) 2/3-dependent mechanism with a lesser role for protein kinase (PK) C. Herein, we investigated the mechanism of desensitization of signalling by the TP alpha isoform. TP alpha undergoes profound agonist-induced desensitization of signalling (intracellular calcium mobilization and inositol 1,4,5 trisphosphate generation) in response to the TXA(2) mimetic U46619 but, unlike that of TP beta, this is independent of GRKs. Similar to TP beta, TP alpha undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, PKC mechanism where Ser(145) within intracellular domain (IC)(2) represents the key phospho-target. TP alpha also undergoes more profound sustained PKC- and PKG-dependent desensitization where Thr(337) and Ser(331), respectively, within its unique C-tail domain were identified as the phospho-targets. Desensitization was impaired by the nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC) and PKG inhibitors L-NAME, LY 83583 and KT5823, respectively, indicating that homologous desensitization of TP alpha involves nitric oxide generation and signalling. Consistent with this, U46619 led to rapid phosphorylation/activation of endogenous eNOS. Collectively, data herein suggest a mechanism whereby agonist-induced PKC phosphorylation of Ser(145) partially and transiently impairs TP alpha signalling while PKG- and PKC-phosphorylation at both Ser(331) and Thr(337), respectively, within its C-tail domain profoundly desensitizes TP alpha, effectively terminating its signalling. Hence, in addition to the agonist-mediated PKC feedback mechanism, U46619-activation of the NOS/sGC/PKG pathway plays a significant role in inducing homologous desensitization of TP alpha.  相似文献   

20.
We demonstrate a role for protein kinase casein kinase 2 (CK2) in the phosphorylation and regulation of the M3-muscarinic receptor in transfected cells and cerebellar granule neurons. On agonist occupation, specific subsets of receptor phosphoacceptor sites (which include the SASSDEED motif in the third intracellular loop) are phosphorylated by CK2. Receptor phosphorylation mediated by CK2 specifically regulates receptor coupling to the Jun-kinase pathway. Importantly, other phosphorylation-dependent receptor processes are regulated by kinases distinct from CK2. We conclude that G protein-coupled receptors (GPCRs) can be phosphorylated in an agonist-dependent fashion by protein kinases from a diverse range of kinase families, not just the GPCR kinases, and that receptor phosphorylation by a defined kinase determines a specific signalling outcome. Furthermore, we demonstrate that the M3-muscarinic receptor can be differentially phosphorylated in different cell types, indicating that phosphorylation is a flexible regulatory process where the sites that are phosphorylated, and hence the signalling outcome, are dependent on the cell type in which the receptor is expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号