首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological cross-sectional areas (CSAp) of the vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM) and rectus femoris (RF) were obtained, in vivo, from the reconstructed muscle volumes, angles of pennation and distance between tendons of six healthy male volunteers by nuclear magnetic resonance imaging (MRI). In all subjects, the isometric maximum voluntary contraction strength (MVC) was measured at the optimum angle at which peak force occurred. The MVC developed at the ankle was 746.0 (SD 141.8) N and its tendon component (Ft), given by a mechanical advantage of 0.117 (SD 0.010), was 6.367 (SD 1.113) kN. To calculate the force acting along the fibres (Ff) of each muscle, Ft was divided by the cosine of the angle of pennation and multiplied for (CSAp.sigma CSAp-1), where sigma CSAp was the sum of CSAp of the four muscles. The resulting Ff values of VL, VI, VM and RF were: 1.452 (SD 0.531) kN, 1.997 (SD 0.187) kN, 1.914 (SD 0.827) kN, and 1.601 (SD 0.306) kN, respectively. The stress of each muscle was obtained by dividing these forces for the respective CSAp which was: 6.24 x 10(-3) (SD 2.54 x 10(-3)) m2 for VL, 8.35 x 10(-3) (SD 1.17 x 10(-3)) m2 for VI, 6.80 x 10(-3) (SD 2.66 x 10(-3)) m2 for VM and 6.62 x 10(-3) (SD 1.21 x 10(-3)) m2 for RF. The mean value of stress of VL, VI, VM and RF was 250 (SD 19) kN m-2; this value is in good agreement with data on animal muscle and those on human parallel-fibred muscle.  相似文献   

2.
Knee pain and dysfunction have been often associated with an ineffective pull of the patella by the vastus medialis (VM) relative to the vastus lateralis (VL), particularly in individuals with knee joint malalignment. Such changes in muscular behavior may be attributed to muscle inhibition and/or atrophy that precedes the onset of symptoms. The aim of this study was to investigate possible effects of knee joint malalignment, indicated by a high quadriceps (Q) angle (HQ angle >15 degrees ), on the anatomic cross-sectional area (aCSA) of the entire quadriceps and its individual parts, in a group of 17 young asymptomatic men compared with a group of 19 asymptomatic individuals with low Q angle (LQ angle <15 degrees ). The aCSA of the entire quadriceps (TQ), VM, VL, vastus intermedius (VI), rectus femoris (RF), and patellar tendon (PT) were measured during static and dynamic magnetic resonance imaging (MRI) with the quadriceps relaxed and under contraction, respectively. A statistically significant lower aCSA was obtained in the HQ angle group, compared with the LQ angle group, for the TQ, VL, and VI in both static (TQ = 9.9%, VL = 12.9%, and VI = 9.1%; P < 0.05) and dynamic imaging (TQ = 10.7%, P < 0.001; VL = 13.4%, P < 0.01; and VI = 9.8%, P < 0.05) and the aCSA of the VM in dynamic MRI (11.9%; P < 0.01). The muscle atrophy obtained in the HQ angle group may be the result of a protective mechanism that inhibits and progressively adapts muscle behavior to reduce abnormal loading and wear of joint structures.  相似文献   

3.
In vivo muscle forces are typically estimated using literature-based or subject-specific moment arms (MAs) because it is not possible to measure in vivo muscle forces non-invasively. However, even subject-specific muscle-tendon MAs vary across contraction levels and are impossible to determine at high contraction levels without techniques that use ionized radiation. Therefore, different generic MA functions are often used to estimate in vivo muscle forces, which may alter force predictions and the shape of the muscle’s force-length relationship. The aim of this study was to examine the influence of different literature-based patella tendon MA functions on the vastus lateralis (VL) force-angle relationship. Participants (n = 11) performed maximum voluntary isometric knee extension contractions at six knee flexion angles, ranging from 40° to 90°. To estimate in vivo VL muscle force, the peak knee extension torque at each joint angle was multiplied by the VL’s physiological cross-sectional area (PCSA) relative to the quadriceps’ PCSA (34%) and then divided by the angle-specific patella tendon MA for 19 different functions. Maximum VL force was significantly different across MA functions (p ≤ 0.039) and occurred at different knee flexion angles. The shape of the VL force-angle relationship also differed significantly (p < 0.01) across MA functions. According to the maximum force generated by VL based on its literature-derived PSCA, only the VL force-angle relationships estimated using geometric imaging-based MA functions are feasible across the knee angles studied here. We therefore recommend that an average of these MA functions is calculated to estimate quadriceps muscle forces if subject-specific MAs cannot be determined.  相似文献   

4.
This study investigated variations in electromyographic (EMG) responses of the erector spinae (ES), vastus medialis (VM), rectus femoris (RF), and vastus lateralis (VL) to different seatback angles during leg extension. Twenty men and women (10 men, 10 women; age 27.49 +/- 6.16 years) performed 8 repetitions at 70% of 8 repetition maximum at seatback angles of 1.57, 1.75, and 1.92 radius (rad). Analyses using repeated-measures analysis of variance indicated the greatest root square mean of the EMG (rmsEMG) and integrated EMG (intEMG) for the ES were at 1.92 rad, and the greatest for the VM (concentric) and VL (eccentric) were at 1.57 rad. No differences were observed among seat angles for the RF except for a higher normalized intEMG at 1.92 than 1.75 rad (concentric). Throughout all sets for all conditions and muscles, rmsEMG and intEMG significantly increased and median power frequency significantly decreased. These data indicate that a seatback angle of 1.57 rad is best for a leg extension machine, because this angle maximizes quadriceps activity while minimizing stress on the lower back muscles.  相似文献   

5.
Muscle-specific atrophy of the quadriceps femoris with aging.   总被引:6,自引:0,他引:6  
We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 +/- 2 yr) and ten old (79 +/- 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased (P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar (P > 0.05) between young and old (RF: 10 +/- 0.3 vs. 11 +/- 0.4; VL: 33 +/- 1 vs. 33 +/- 1; VI: 31 +/- 1 vs. 31 +/- 0.4; VM: 26 +/- 1 vs. 25 +/- 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.  相似文献   

6.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

7.
Five healthy men carried out a program of head-down bed rest (BR) for 20 days. Before and after BR, a series of cross-sectional scans of the thigh were performed using magnetic resonance imaging, from which volumes of the quadriceps muscles were determined and physiological cross-sectional areas (PCSA) were calculated. Muscle thickness and pennation angles of the triceps brachii, vastus lateralis, and triceps surae muscles were also determined by ultrasonography. During BR, subjects performed unilateral isokinetic knee extension exercises every day. The contralateral limb served as a control. Decrease in PCSA after BR was greater in the control (-10.2 +/- 6.3%) than in the trained limb (-5.2 +/- 4.2%). Among the quadriceps, vastus intermedius in the control limb was predominantly atrophied by BR with respect to the volume and PCSA, and the rectus femoris showed the greatest training effect and retained its size in the trained limb. Decreases in muscle thicknesses in leg muscles were not prevented by the present exercise protocol, suggesting a need for specific exercise training for these muscles. Neither trained nor control muscles showed significant changes in pennation angles in any muscles after BR, suggesting that muscle architecture does not change remarkably by muscle atrophy by up to 10%.  相似文献   

8.
The purpose of this study was to examine the effects of unilateral isometric leg extension strength training on the strength and integrated electromyogram (IEMG) of both the trained and untrained limbs at multiple joint angles. A training (TRN) group [nine women; mean (SD) age, 20(1) years] exercised for 6 weeks with isometric leg extensions at 80% of maximal isometric torque. A control (CTL) group [eight women; 21(1) years] did not exercise. The training was performed three times per week on a Cybex II isokinetic dynamometer at a joint angle where the lever arm was 0.79 rad below the horizontal plane. The subjects were tested pre- and posttraining for maximal unilateral isometric torque in both limbs at joint angles of zero, 0.26, 0.79,1.31, and 1.57 rad below the horizontal plane. Bipolar surface electrodes were used to record the IEMG of the vastus lateralis (VL) and vastus medialis (VM) during the isometric tests. Three univariate (torque, IEMG-VL, and IEMG-VM) four-way (group x time x limb x angle) mixed factorial ANOVAs were used to analyze the data. The results indicated joint angle specificity for isometric torque in the TRN group only, with significant increases in torque at 0.79 (P = 0.0004) and 1.31 (P = 0.0039) rad. No significant increases in torque were found in the untrained limb of the TRN group or in either limb of the CTL group. Similarly, there were no significant changes in IEMG as a result of the training for the VL or VM. The joint-angle-specific strength increases without concomitant increases in IEMG were hypothesized to result from joint-angle-specific decreases in antagonistic co-contraction and/or preferential hypertropy of the quadriceps femoris at specific levels of the muscle group.  相似文献   

9.
As mathematical models of the musculoskeletal system become increasingly detailed and precise, they require more accurate information about the architectural parameters of the individual muscles. These muscles are typically represented as Hill-type models, which require data on fiber length, physiological cross-sectional area (PCSA) and pennation angle. Most of this information for lower limb muscles has been published, except for data on the pennation angle of the intrinsic muscles of the foot. Each (n=20) intrinsic muscle of three human feet was dissected free. The dorsal and plantar surfaces were photographed and a digitized color image was imported into Abobe Photoshop. The muscles were divided into "anatomical units". For each anatomical unit (n=26), a line was drawn along the tendon axis and a number of other lines were drawn along individual muscle fibers. The angle between the tendon line and each fiber line was defined as the pennation angle of that fiber. By visual inspection, an effort was made to take measurements such that they represented the distribution of fibers in various parts of the muscle. Although some individual muscles had higher or lower pennation angles, when averaged for all specimens, the second dorsal interosseous had the smallest pennation angle (6.7+/-6.81 degrees) while the abductor digiti minimi had the largest (19.1+/-11.19 degrees). Since the cosines of the angles range from 0.9932 to 0.9449, the effect of the pennation angle on the force generated by the muscle was not great.  相似文献   

10.
This study sought to examine the shear modulus (i.e., an force index) of three quadriceps muscles [i.e., vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] during passive stretching to determine whether epimuscular myofascial force transmission occurs across muscles. Secondly, this study compared the shear modulus between the quadriceps muscles, in both proximal and distal regions. Twelve healthy individuals were assessed during a passive knee flexion maneuver between 0° and 90° of knee flexion with the hip in two positions: flexed (80°) vs. neutral (0°). Muscle electrical activity was also assessed during the testing. No differences were observed between the hip testing positions for myoelectric activity (p > 0.43), and for VL and VM shear modulus (p = 0.12–0.98). Similarly, there were no differences between the proximal and distal regions for all muscles (p = 0.42–0.93). RF showed a higher shear modulus with the hip in the neutral position (p = 0.004). With the hip flexed, the VL showed the greatest shear modulus among the tested muscles (p < 0.025); while with the hip in the neutral position, no differences were observed for shear modulus between VL and RF (p = 0.817). These findings suggest that epimuscular myofascial force transmission (at a muscle belly level) does not occur between the quadriceps muscles when passively flexing the knee until 90°. Whether epimuscular myofascial force transmission occurs in the quadriceps muscles bellies with greater muscle stretch (either through knee flexion or hip extension) remains to be examined.  相似文献   

11.
Three different pennation angle assumptions are compared to experimental data from Huijing and Woittiez (Neth. J. Zool. 34, 21-32, 1984) that relate fibre length to angle of pennation changes. The assumptions tested are: (1) neglecting pennation; (2) assuming a fixed pennation; and (3) assuming a constant muscle volume and thickness resulting in pennation angle being dependent on fibre length. Each assumption is compared by transforming fibre force/length and force/velocity characteristics to muscle properties. In general, the fixed pennation assumption provides the worst estimate of muscle force output with a peak error of 0.31 Fo during isometric contractions at small muscle lengths. A better estimate of muscle force output was provided by neglecting pennation entirely. The assumption that the pennation angle changed with fibre length maintained an error of less than 0.05 Fo for most lengths and velocities tested and provided the best estimate of muscle force output.  相似文献   

12.
The aim of this study was to assess the predictability of in vivo, ultrasound-based changes in human tibialis anterior (TA) pennation angle from rest to maximum isometric dorsiflexion (MVC) using a planimetric model assuming constant thickness between aponeuroses and straight muscle fibres. Sagittal sonographs of TA were taken in six males at ankle angles of -15 degrees (dorsiflexion direction), 0 degrees (neutral position), + 15 (plantarflexion direction) and + 30 degrees both at rest and during dorsiflexor MVC trials performed on an isokinetic dynamometer. At all four ankle angles scans were taken from the TA proximal, central and distal regions. TA architecture did not differ (P > 0.05) neither between its two unipennate parts nor along the scanned regions over its length at a given ankle angle and state of contraction. Comparing MVC with rest at any given ankle angle, pennation angle was larger (62-71%, P < 0.01), fibre length smaller (37-40%, P < 0.01) and muscle thickness unchanged (P > 0.05). The model used estimated accurately (P > 0.05) changes in TA pennation angle occurring in the transition from rest to MVC and therefore its use is encouraged for estimating the isometric TA ankle moment and force generating capacity using musculoskeletal modelling.  相似文献   

13.
AIM: To examine the time-of-day (TOD) effect on torque-force/angle, fibre length (FL), tendon stiffness (K), stress, and strain using the quadriceps muscle-tendon complex as a model. METHODS: Twelve healthy young men (aged 27+/-2.0 years) were studied at AM (7h45) and PM (5h45). Maximal isometric contractions were carried out on an isokinetic dynamometer, with real-time recordings of vastus lateralis (VL) FL and patella tendon K using B-mode ultrasonography. Percutaneous electrical twitch doublets superimposed on maximal torque were used to test for muscle activation capacity (AC). RESULTS: At PM, torque and force increased by 16+/-3.0% (P<0.01) over 30-90 degrees knee angles. Where the load was standardised (at 250N) in order to discriminate between torque generation capacity and tendon K changes, PM relative to AM, there were 8% and 13% (P<0.01) reductions in relaxed and contracted FL, respectively. Average K decreased by 21% (P<0.001) and the maximal stress and strain were increased at PM by 11% and 16%, respectively (P<0.01). No TOD effect on AC was seen. CONCLUSION: The quadriceps torque or force-angle relationships shift upwards at PM vs. AM, with no shift in the position of the optimal knee angle. This torque or force increase appears not to be centrally modulated. Although K decreases with TOD thereby potentially shortening the working length of the sarcomeres, these changes overall do not affect the ability of the muscle to produce greater torque in the evening.  相似文献   

14.
EMG analysis has indicated that the vastus lateralis and vastus medialis contribute less to the quadriceps moment during knee extension than the physiological cross-sectional areas (PCSA's) of the muscles indicate. Both PCSA- and EMG-based quadriceps force distributions were utilized while computationally simulating knee extension. For both distributions, a 10 degrees increase in the Q-angle and a 50% decrease in the force applied by the vastus medialis were simulated, and the influence of these changes on the resultant force and moment applied by the quadriceps muscles and the patella tendon was quantified. For both quadriceps force distributions, increasing the Q-angle increased the lateral force and the moment acting to rotate the distal patella laterally. Due to the relatively large forces initially attributed to the vastus medialis and vastus lateralis for the PCSA-based quadriceps force distribution, decreasing the vastus medialis force created a large force imbalance between these two muscles. For the PCSA-based quadriceps force distribution, decreasing the vastus medialis force increased the lateral rotation moment and the moment acting to tilt the patella laterally. For the EMG-based quadriceps force distribution, decreasing the vastus medialis force produced relatively little change in the tilt and rotation moments. For both quadriceps force distributions, increasing the Q-angle increased the maximum and mean cartilage pressure during flexion, but decreasing the vastus medialis force only increased the cartilage pressures for the PCSA-based quadriceps distribution. The choice of the initial quadriceps distribution can influence the outcome of patellofemoral simulation when manipulating quadriceps muscle forces.  相似文献   

15.
Despite full voluntary effort, neuromuscular activation of the quadriceps femoris muscle appears inhibited during slow concentric and eccentric contractions. Our aim was to compare neuromuscular activation during maximal voluntary concentric and eccentric quadriceps contractions, hypothesizing that inhibition of neuromuscular activation diminishes with resistance training. In 15 men, pretraining electromyographic activity of the quadriceps muscles [vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] was 17-36% lower during slow and fast (30 and 240 degrees/s) eccentric and slow concentric contractions compared with fast concentric contractions. After 14 wk of heavy resistance training, neuromuscular inhibition was reduced for VL and VM and was completely removed for RF. Concurrently, electromyographic activity increased 21-52, 22-29, and 16-32% for VL, VM, and RF, respectively. In addition, median power frequency decreased for VL and RF. Eccentric quadriceps strength increased 15-17%, whereas slow and fast concentric strength increased 15 and 8%, respectively. Pre- and posttraining median power frequency did not differ between eccentric and concentric contractions. In conclusion, quadriceps motoneuron activation was lower during maximal voluntary eccentric and slow concentric contractions compared with during fast concentric contraction in untrained subjects, and, after heavy resistance training, this inhibition in neuromuscular activation was reduced.  相似文献   

16.
The quadriceps muscles of neurologically intact and spinal cord injured (SCI) human subjects were stimulated with constant current pulses. Up to three, separately adjustable stimulating electrodes over the motor points for vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were used to maximize torque generation while minimizing discomfort. The torque generated by stimulation increased as the knee was slowly flexed to about 1 rad (50-60 degrees) and decreased beyond that point (a 'negative slope' on a torque-angle curve). Despite this region of negative slope the force generated by small oscillations remained positively correlated to the angle changes. When the knee was slowly extended again from a flexed position, the torque continued to decline and therefore showed a large degree of 'hysteresis'. Of the three heads studied, only stimulation of RF muscle generally produced this behavior. VL and VM had torques that increased monotonically with knee flexion over the range studied. The torques generated with electrical stimulation of normal subjects represented up to about 30% of maximum voluntary contraction. When subjects generated similar torques voluntarily, the negative slope region and substantial hysteresis were not observed. Thus, SCI subjects may be adversely affected by hysteresis during electrically-induced transitions from sitting to standing and vice versa, while normal subjects are not.  相似文献   

17.
The purpose of this study was to determine the validity of fascicle length estimation in the vastus lateralis (VL) and vastus intermedius (VI) using ultrasonography. The fascicle lengths of the VL and VI muscles were measured directly (dFL) using calipers, and were estimated (estmFL) using ultrasonography, in 10 legs from five Thiel’s embalmed cadavers. To determine the validity of the estmFLs, FL was estimated using five previously published models and compared with dFL. The intraclass correlation coefficients (ICCs) of two of the five models were > 0.75, indicating that these estimates were valid. Both of these models combined measurement of the length of the visible part of the fascicle with linear extrapolation of the length of the part of the fascicle that was not visible on the sonographic image. The ICCs and absolute% difference were best in models that used appropriate pennation angles. These results suggest that two of the five previously published models are valid for obtaining estmFL of the VL and VI using ultrasonography.  相似文献   

18.
Force enhancement following muscle stretching and force depression following muscle shortening are well-accepted properties of skeletal muscle contraction. However, the factors contributing to force enhancement/depression remain a matter of debate. In addition to factors on the fiber or sarcomere level, fiber length and angle of pennation affect the force during voluntary isometric contractions in whole muscles. Therefore, we hypothesized that differences in fiber lengths and angles of pennation between force-enhanced/depressed and reference states may contribute to force enhancement/depression during voluntary contractions. The purpose of this study was to test this hypothesis. Twelve subjects participated in this study, and force enhancement/depression was measured in human tibialis anterior. Fiber lengths and angles of pennation were quantified using ultrasound imaging. Neither fiber lengths nor angles of pennation were found to differ between the isometric reference contractions and any of the force-enhanced or force-depressed conditions. Therefore, we rejected our hypothesis and concluded that differences in fiber lengths or angles of pennation do not contribute to the observed force enhancement/depression in human tibialis anterior, and speculate that this result is likely true for other muscles too.  相似文献   

19.
To determine the shortening velocities of fascicles of the vastus lateralis muscle (VL) during isokinetic knee extension, six male subjects were requested to extend the knee with maximal effort at angular velocities of 30 and 150 degrees /s. By using an ultrasonic apparatus, longitudinal images of the VL were produced every 30 ms during knee extension, and the fascicle length and angle of pennation were obtained from these images. The shortening fascicle length with extension of the knee (from 98 to 13 degrees of knee angle; full extension = 0 degrees ) was greater (43 mm) at 30 degrees /s than at 150 degrees /s (35 mm). Even when the angular velocity remained constant during the isokinetic range of motion, the fascicle velocity was found to change from 39 to 77 mm/s at 150 degrees /s and from 6 to 19 mm/s at 30 degrees /s. The force exerted by a fascicle changed with the length of the fascicle at changing angular velocities. The peak values of fascicle force and velocity were observed at approximately 90 mm of fascicle length. In conclusion, even if the angular velocity of knee extension is kept constant, the shortening velocity of a fascicle is dependent on the force applied to the muscle-tendon complex, and the phenomenon is considered to be caused mainly by the elongation of the elastic element (tendinous tissue).  相似文献   

20.
The aim of the current study was to examine the relationships between quadriceps torque, vastus lateralis pennation angle (theta), and patella tendon stiffness (K) at 07:45 and 17:45 h. Using short-duration static contractions, simultaneous recordings were made of vastus lateralis (VL) electromyograph (EMG), theta and patella tendon K. Peak isometric extension torque (Peak torque Ext(corr)) increased by 29.4+/-6.5% at a knee angle of 70 degrees (p=0.03) in the evening compared to the morning. In the contracted muscle, a 35.0+/-11.0% (p=0.02) time-of-day (TOD)-related change in theta (to a greater evening compared to morning theta) was observed. Morning and evening measures of theta were also made, both at rest and at a standardized force level (250 N), to separate architecture change effects from increased torque capacity effects. Significant increments in theta in both the resting muscle (13.0+/-5.1%, p=0.046) and during the standardized exertions (8.0+/-3.1%, p=0.04) were observed in the evening versus the morning. Increases in theta with TOD were significantly correlated with the 40% (p=0.018) decrease in K both during the standardized contractions (r=0.788, p<0.001) and at rest (r=0.77, p=0.026). These data show that TOD affects K and theta and that these two important factors involved in in-vivo muscle torque generation capacity are associated. The data also show that despite the potentially deleterious effects of the direction of the changes in both K and theta with TOD, peak torque Ext(corr) still shows a significant upward shift in the evening relative to the morning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号