首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
3'-end labeling of RNA with recombinant yeast poly(A) polymerase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Two commonly used methods to end-label RNA-molecules are 5'-end labeling by polynucleotide kinase and 3'-end labeling with pCp and T4 RNA ligase. We show here that RNA 3'-ends can also be labeled with the chain-terminating analogue cordycepin 5'-triphosphate (3'-deoxy-ATP) which is added by poly(A) polymerase. For a synthetic RNA it is shown that 40% of cordycepin becomes incorporated when the nucleotide is used at limiting concentrations and that with an excess of cordycepin 5'-triphosphate essentially all the RNA becomes modified at its 3'-end. The reaction is complete within minutes and the RNA product is uniform and suitable for sequence analysis. The efficiency of labeling varies with different RNA-molecules and is different from RNA ligase. Poly(A) polymerase preferentially labels longer RNA-molecules whereas short RNA-molecules are labeled more efficiently by T4 RNA ligase.  相似文献   

2.
A new yeast poly(A) polymerase complex involved in RNA quality control   总被引:2,自引:0,他引:2  
Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAiMet). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAiMet with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAiMet by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.  相似文献   

3.
Ovine mammary gland mRNAs were translated in a wheat-germ cell-free system in the presence of radioactive amino acids. Automated Edman degradation performed on α-lactalbumin isolated by immunoprecipitation from the mixture of radiolabelled lactoproteins showed the occurrence of an hydrophobic 19 residues long amino terminal extension. The pre-protein represents the primary translation product since the amino terminal methionyl residue was found to be donated by initiator Met-tRNAiMet. Comparison of the signals of ovine α-lactalbumin and hen's egg white lysozyme, two homologous proteins which are thought to be derived from a common ancestor, suggests that the signal region has evolved at least as rapidly as the remaining part of the polypeptide chain.  相似文献   

4.
We have studied the nucleotide specificity of vaccinia virus poly(A) polymerase using a novel primer extension assay. Oligoribonucleotide primers labeled at the 5' end with 32P were elongated by the enzyme in the presence of ATP, leading to the 3' addition of greater than 1000 adenylate residues/primer molecule. In the presence of UTP, the enzyme catalyzed 3' polymerization of long poly(U) tails, albeit at a reduced rate of chain growth. In the presence of both ATP and UTP, 3' addition was selective for ATP. The transient accumulation of RNAs elongated by 10-16 residues suggested that polyadenylation (and polyuridylation) was a biphasic reaction. Quantitative 3' addition of GMP (from GTP) or CMP (from CTP) to the primer was also observed, although the rate of chain growth was so slow as to allow synthesis of only short oligo(G) or oligo(C) tails. The deoxynucleotides 3'-dATP (cordycepin triphosphate) and ddATP were markedly inhibitory to poly(A) polymerase. Primer elongation studies were consistent with inhibition due to 3' incorporation of inhibitor and chain termination. Incubation of enzyme with [alpha-32P] cordycepin triphosphate resulted in labeling of the Mr 57,000 enzyme subunit, apparently via formation of a covalent nucleotidyl-protein complex. These data are discussed in light of their implications for the catalytic mechanism of polyadenylation.  相似文献   

5.
Association of poly(A) polymerase with U1 RNA   总被引:3,自引:0,他引:3  
Previous studies (Stetler, D. A., and Jacob, S. T. (1984) J. Biol. Chem. 259, 7239-7244) have shown that poly(A) polymerase from adult rat liver (liver-type) is structurally and immunologically distinct from the corresponding rat hepatoma (tumor-type) enzyme. When hepatoma 7777 (McA-RH 7777) cells were labeled with [32P]inorganic phosphate, followed by immunoprecipitation with anti-hepatoma poly(A) polymerase antibodies and analysis of the RNAs in the immunoprecipitate, only one labeled small nuclear RNA corresponding to U1 RNA was found. Preimmune sera did not form a complex with U1 RNA. Hepatoma poly(A) polymerase antisera did not immunoprecipitate U1 RNA or any other small nuclear RNA from a cell line (H4-11-EC3) which does not contain the tumor-type poly(A) polymerase. Immunoblot analysis of hepatoma 7777 nuclear extract or purified poly(A) polymerase with anti-ribonucleoprotein antisera did not show any cross-reactivity of the latter sera with poly(A) polymerase. The major RNA immunoprecipitated from the hepatoma nuclear extracts using trimethyl cap (m3G) antisera corresponded to the RNA immunoprecipitated with poly(A) polymerase antisera. These data indicate that U1 RNA is closely associated with poly(A) polymerase and suggest the potential involvement of this RNA in the cleavage/polyadenylation of mRNA precursor.  相似文献   

6.
7.
8.
RNase E initiates the decay of Escherichia coli RNAs by cutting them internally near their 5′-end and is a component of the RNA degradosome complex, which also contains the 3′-exonuclease PNPase. Recently, RNase E has been shown to be able to remove poly(A) tails by what has been described as an exonucleolytic process that can be blocked by the presence of a phosphate group on the 3′-end of the RNA. We show here, however, that poly(A) tail removal by RNase E is in fact an endonucleolytic process that is regulated by the phosphorylation status at the 5′- but not the 3′-end of RNA. The rate of poly(A) tail removal by RNase E was found to be 30-fold greater when the 5′-terminus of RNA substrates was converted from a triphosphate to monophosphate group. This finding prompted us to re-analyse the contributions of the ribonucleolytic activities within the degradosome to 3′ attack since previous studies had only used substrates that had a triphosphate group on their 5′-end. Our results indicate that RNase E associated with the degradosome may contribute to the removal of poly(A) tails from 5′-monophosphorylated RNAs, but this is only likely to be significant should their attack by PNPase be blocked.  相似文献   

9.
Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 +/- 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 +/- 0.012 mm) and (0.8 and 0.170 +/- 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 micro m may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA.  相似文献   

10.
It has become increasingly clear that mRNA stability is an important determinant of mRNA abundance in virtually all organisms. Although our understanding of prokaryotic lower eukaryotic mRNA stability mechanisms has progressed considerably, little is known about mammalian mRNA stability mechanisms, particularly at the tissue and animal levels. This is due largely to the lack of suitable methods to approach the problem. In this study, we have developed and refined the 3'-end poly(A)-tailing polymerase chain reaction (PCR) method to detect degradation intermediates in vivo. Using an in vitro transcribed RNA as a template, we found that the method could be used to detect a homogeneous pool of RNA down to 0.1 ng. The addition of 10 microg of total RNA from tissues decreased the sensitivity limit to 4 ng. Detection limits of the technique were determined precisely by varying the concentrations of in vitro transcribed RNA in a constant amount of total RNA and varying the concentration of total RNA while maintaining a constant amount of in vitro transcribed RNA. Our overall results showed that the poly(A)-tailing PCR method could be used to detect specific RNA species of approximately 1000 nt in a pool of heterogeneous RNA in the range of 1 in 2500 to 1 in 10,000. To our knowledge, this is the most sensitive method to date for identifying mRNA degradation intermediates. Employing sense strand gene-specific primers in this method, we have discovered the class II and class III P-glycoprotein (Pgp) mRNA degradation intermediates in normal rat tissues. This method should serve as an additional tool to help us understand mRNA decay mechanisms in tissues and at animal levels.  相似文献   

11.
12.
13.
The modification of RNA with fluorophores, affinity tags and reactive moieties is of enormous utility for studying RNA localization, structure and dynamics as well as diverse biological phenomena involving RNA as an interacting partner. Here we report a labeling approach in which the RNA of interest--of either synthetic or biological origin--is modified at its 3'-end by a poly(A) polymerase with an azido-derivatized nucleotide. The azide is later on conjugated via copper-catalyzed or strain-promoted azide-alkyne click reaction. Under optimized conditions, a single modified nucleotide of choice (A, C, G, U) containing an azide at the 2'-position can be incorporated site-specifically. We have identified ligases that tolerate the presence of a 2'-azido group at the ligation site. This azide is subsequently reacted with a fluorophore alkyne. With this stepwise approach, we are able to achieve site-specific, internal backbone-labeling of de novo synthesized RNA molecules.  相似文献   

14.
Infection of germinating wheat embryos by a fungal pathogen (Drechslera sorokiana) drastically lowered (70–73%) the relative abundance of poly(A)+ RNA. This was paralleled by a significant loss in the activities of RNA polymerase II (60–70%) and poly(A) polymerase (80–85%) enzymes. The inhibition of RNA polymerase II (60–65%) and poly(A) polymerase (70–85%) activities was also witnessed by the in vitro addition of the fungal extract to the enzyme preparations isolated from healthy embryos. The fungal extract showed negligible phosphatase and nuclease activities. This ruled out the possibility of rapid degradation of the labelled substrate [3H]ATP, primer RNA, or even the labelled reaction products under our assay conditions. The inhibitory effect of the fungal extract could be alleviated by fractionating the treated enzyme preparation by phosphocellulose chromatography. This indicated that the fungal extract was directly responsible for the inactivation of the polymerases in a reversible manner. The inhibitory function of the fungal extract was destroyed by treatment with pronase, but not with RNAase A and RNAase Ti. Poly(A) ‘tails’ were enzymatically excised from 32P-labelled poly(A)+ RNA and fractionated on acrylamide gels for autoradiographic analysis. The lengths of the 32P-labelled poly(A) ‘tails’ in control and infected embryos turned out to be identical (64 nucleotides). Our results suggest that the relative abundance of poly(A)+ RNA is diminished in fungal-infected wheat embryos through the selective inactivation of RNA polymerase II and poly(A) polymerase enzymes.  相似文献   

15.
C. P. Beetz  G. Ascarelli 《Biopolymers》1982,21(8):1569-1586
We have measured the ir absorption of 5′CMP, 5′IMP, and poly(I)·poly(C) from ~25 to ~500 cm?1. From a comparison of the data with the previously measured absorption of the corresponding nucleosides and bases we can identify several “lines” associated with the deformation of the ribose ring. Out-of-plane deformation of the bases contributes strongly to vibrations near 200 cm?1. The same ribose vibrations observed in the nucleotides are found in poly(I)·poly(C). They sharpen with increasing water absorption. A study of the spectra of poly(I)·poly(C) as a function of the adsorbed water indicates that water does not contribute in a purely additive fashion to the polynucleotide spectrum but depends on the conformation of the helix. However, the only spectral feature that shifts drastically with conformation is near 45 cm?1. Measurements at cryogenic temperatures indicate some sharpening of the spectrum of poly(I)·poly(C). Instead, no sharpening is observed in the spectrum of the nucleotides. Shear degradation of poly(I)·poly(C) produces significant spectral changes in the 200-cm?1 region and sharpening of the features assigned to the low-frequency ribose-ring vibrations.  相似文献   

16.
We have identified a mitochondrial protein from Saccharomyces cerevisiae which confers the ability to recognize mitochondrial promoters onto a nonspecifically transcribing mitochondrial core RNA polymerase and we have purified this specificity factor 10,700-fold from a whole cell extract. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified fraction followed by elution and renaturation of protein activity shows that the specificity factor is a 43-kDa polypeptide which directs mitochondrial core RNA polymerase to promoters belonging to rRNA-, tRNA-, and protein-encoding genes, as well as to mitochondrial replication origins. Gel filtration and glycerol gradient sedimentation studies indicate that the specificity factor shows little association with core RNA polymerase in the absence of DNA, and that it behaves like a monomeric 43-kDa protein.  相似文献   

17.
18.
Some properties of unprimed poly(A)-poly(U) synthesis by DNA-dependent RNA polymerase from Caulobacter crescentus were examined. The reaction required ATP and UTP as substrates and manganese as a divalent cation. Rifampicin completely inhibited the reaction at a concentration of 1 micron/ml, and the enzyme catalyzed the polymer synthesis well regardless of the presence of GTP, CTP or both. The chain length of the poly(A)-poly(U) synthesized was about one hundred base pairs, as estimated from a sedimentation velocity and the molar ratio of [3H]AMP to [gamma-32P]ATP incorporated into the poly(A)-poly(U). The reaction was dependent on the square of the enzyme concentration and the enzyme dimers formed complexes with poly(A)-poly(U) during the reaction.  相似文献   

19.
Cleavage and polyadenylation of eukaryotic mRNA requires efficiency and positioning elements in the 3'-untranslated region (3'-UTR) of the mRNA. Specific point mutations were introduced into the yeast GCN4 3'-UTR to detect sequence motifs which are involved in the positioning of the poly(A) site. 3'-End proces-sing activities of different GCN4 3'-UTR alleles were measured in an in vivo test system. Point mutations in an AAGAA motif defocussed selection of the poly(A) sites of the GCN4 3'-UTR to various additional poly(A) sites instead of the single site of the wild-type GCN4 3'-UTR. A strain with an intact wild-type GCN4 3'-UTR but impaired in RNA15 encoding an RNA-binding processing factor showed a similar defocussed pattern of poly(A) site selection. Remarkably, two additional sequence motifs upstream of the AAGAA motif which resemble yeast efficiency motifs independently affected poly(A) site positioning but not efficiency of 3'-end processing. Mutations in one motif resulted in an additional upstream poly(A) site. Alterations of the other motif shifted the poly(A) sites exclusively to two downstream poly(A) sites. These data suggest several contact points between the precursor mRNA and the polyadenylation machinery in yeast.  相似文献   

20.
K M Rose  P A Ruch  S T Jacob 《Biochemistry》1975,14(16):3598-3604
Factors affecting the inhibition of RNA polymerase II from rat liver by the O-n-octyloxime of 3-formylrifamycin SV (AF/013) were investigated. Using either native or denatured calf-thymus DNA as template, almost complete inhibition of RNA polymerase II was observed when AF/013 was added directly to the enzyme. Considerable resistance to AF/013 was observed when RNA polymerase II was preincubated with denatured DNA at either 0 or 37 degrees. However, under similar conditions, no resistance was observed when enzyme was preincubated with native DNA. Only when AF/013 was added to the ongoing reaction using native DNA did a resistance to AF/013 occur. The inhibition of RNA polymerase II by AF/013 was competitive with respect to all four nucleoside triphosphate substrates. The inhibition by AF/013 remaining after enzyme-DNA complex formation also appeared competitive with nucleoside triphosphate levels. The effect of exogenous protein (bovine serum albumin, BSA) on the inhibition of RNA polymerase II was also investigated. BSA reduced the extent of inhibition by AF/013, but did not alter the competitive nature of inhibition. Concurrently, the inhibition of highly purified nuclear poly(A) polymerase from rat liver, a template independent enzyme which incorporates AMP in a chain elongation reaction, was examined. As in the case of RNA polymerase, poly(A) polymerase was inhibited by AF/013 in a manner competitive with the nucleoside triphosphate substrate. The competitive nature of inhibition of RNA polymerase by AF/013 with respect to all four nucleoside triphosphate substrates, before and after enzyme-DNA complex formation, as well as the competitive nature of inhibition of poly(A) polymerase with respect to ATP tend to indicate that the major effect of AF/013 on RNA polymerase II is at the level of the substrate binding as opposed to a specific inhibition of initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号