首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

2.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

3.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

4.
Two complementing temperature-sensitive (ts) herpes simplex virus type 1 (HSV-1) mutants, PAA1rts1 and ts199, were defective in viral DNA synthesis and in the shutoff of cellular macromolecular synthesis at 39.5 degrees C, the nonpermissive temperature. PAA1sts1 and PAA1rts1+ recombinants and PAA1rts1+ revertants were used to examine the contributions of the PAA1r mutation and the ts1 mutation of PAA1rts1 in affecting the levels of viral and cellular DNA synthesized at 34 and 39.5 degrees C. The results of this study suggests an interaction between the viral DNA polymerase and the ts1+ gene product during HSV-1 DNA replication and possibly in the inhibition of host DNA synthesis by HSV-1. Physical mapping of the ts mutations present in ts199 and the PAA1sts1 recombinant ts1-8 were performed by intratypic marker rescue experiments. Surprisingly, both the ts1-8 and ts199 mutations were rescued by two cloned fragments: ts1-8 by BglII-K (map coordinates 0.095 to 0.163) and BglII-I (map coordinates 0.314 to 0.417), while ts199 was rescued by BglII-K and BglII-O (map coordinates 0.163 to 0.197). In more refined mapping experiments, the regions between coordinates 0.347 to 0.378 and 0.126 to 0.163 were able to rescue the ts1-8 mutation. Southern hybridization analysis confirmed that the fragments that rescued ts1-8 and those that rescued ts199 had homology, as predicted by the physical mapping results.  相似文献   

5.
6.
7.
ts ET24 cells are a novel temperature-sensitive (ts) mutant for cell proliferation of hamster BHK21 cells. The human genomic DNA which rescued the temperature-sensitive lethality of ts ET24 cells was isolated and screened for an open reading frame in the deposited human genomic library. X chromosomal DBX gene encoding the RNA helicase, DEAD-BOX X isoform, which is homologous to yeast Ded1p, was found to be defective in this mutant. The single point mutation (P267S) was localized between the Motifs I and Ia of the hamster DBX of ts ET24 cells. At the nonpermissive temperature of 39.5 degrees C, ts ET24 cells were arrested in the G1-phase and survived for more than 3 days. In ts ET24 cells, total protein synthesis was not reduced at 39.5 degrees C for 24 h, while mRNA accumulated in the nucleus after incubation at 39.5 degrees C for 17 h. The amount of cyclin A mRNA decreased in ts ET24 cells within 4 h after the temperature shift to 39.5 degrees C, consistent with the fact that the entry into the S-phase was delayed by the temperature shift.  相似文献   

8.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

9.
The prototype member of the complementation group II temperature-sensitive (ts) mutants of vesicular stomatitis virus, ts II 052, has been investigated. In ts II 052-infected HeLa cells at the restrictive temperature (39.5 degrees C), reduced viral RNA synthesis was observed by comparison with infections conducted at the permissive temperature (30 degrees C). It was found that for an infection conducted at 39.5 degrees C, no 38S RNA or intracytoplasmic nucleocapsids were present. For nucleocapsids isolated from ts II 052 purified virions or from ts II 052-infected cells at 30 degrees C, the RNA was sensitive to pancreatic RNase after an exposure at 39.5 degrees C in contrast to the resistance observed for wild-type virus. The nucleocapsid stability of wild-type virus when heated to 63 degrees C or submitted to varying pH was not found in nucleocapsids extracted from ts II 052 purified virions. The data suggest that for ts II 052 there is an altered relationship between the viral 38S RNA and the nucleocapsid protein(s) by comparison with wild-type virus. Such results argue for the complementation group II gene product being N protein, so that the ts defect in ts II 052 represents an altered N protein.  相似文献   

10.
We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.  相似文献   

11.
Autographa californica nuclear polyhedrosis virus (AcMNPV) mutants that lack the apoptotic suppressor gene p35 cause apoptosis in Spodoptera frugiperda SF21 cells. To identify a viral signal(s) that induces programmed cell death, we first defined the timing of apoptotic events during infection. Activation of a P35-inhibitable caspase, intracellular fragmentation of host and AcMNPV DNA, and cell membrane blebbing coincided with the initiation of viral DNA synthesis between 9 and 12 h after infection and thus suggested that apoptotic signaling begins at or before this time. Virus entry was required since binding of budded virus to host cell receptors alone was insufficient to induce apoptosis. To therefore determine the contribution of early and late replication events to apoptotic signaling, we used the AcMNPV mutant ts8 with a temperature-sensitive lesion in the putative helicase gene p143. At the nonpermissive temperature at which viral DNA synthesis was conditionally blocked, ts8 caused extensive apoptosis of the SF21 cell line p3576D, which dominantly interferes with anti-apoptotic function of viral P35. Confirming that apoptosis can be induced in the absence of normal viral DNA synthesis, parental SF21 cells also underwent apoptosis when infected with a ts8 p35 deletion mutant at the nonpermissive temperature. However, maximum levels of ts8 p35 deletion mutant-induced apoptosis required a temperature-sensitive event(s) that included the initiation of viral DNA synthesis. Collectively, these data suggested that baculovirus-induced apoptosis can be triggered by distinct early (pre-DNA synthesis) and late replicative events, including viral DNA synthesis or late gene expression.  相似文献   

12.
tsJT60 cells are G0-specific temperature-sensitive mutants of the cell cycle from Fischer rats i.e., they grow exponentially at both 34 degrees and 39.5 degrees C, but when stimulated with fetal bovine serum (FBS) from the resting state (G0) they enter S phase at 34 degrees C but not at 39.5 degrees C. Epidermal growth factor (EGF) also induced DNA synthesis, although weakly, in G0-arrested tsJT60 cells at 34 degrees C but failed at 39.5 degrees C. When G0-arrested tsJT60 cells were stimulated at 39.5 degrees C with FBS plus EGF, they entered S phase and divided. Somatomedin C, insulin, or transferrin had a weak effect in inducing DNA synthesis in G0-arrested cells when applied at 34 degrees C or with FBS at 39.5 degrees C. Fibroblast growth factor, platelet-derived growth factor, or 12-O-tetradecanoylphorbol 13-acetate had no such stimulatory effect at 39.5 degrees C. Binding of 125I-somatomedin C was not temperature-sensitive. Several other ts mutant cells that were blocked at 39.5 degrees C from entering S phase from the resting state following FBS addition were stimulated by FBS plus EGF at 34 degrees C but not at 39.5 degrees C.  相似文献   

13.
The cytolytic effect of the autonomous parvovirus minute virus of mice, prototype strain (MVMp), was studied in cultures of ts 339/NRK rat cells that display a temperature-sensitive transformed phenotype as a result of their transformation with a Rous sarcoma virus strain matured in the v-src oncogene. A shift from restrictive (39.5 degrees C) to permissive (34.5 degrees C) temperature was associated with a marked sensitization of these cells to killing by MVMp. In contrast, ts 339/NRK cell derivatives supertransformed with a wild-type src oncogene were sensitive to MVMp at both temperatures, suggesting that the expression of a functional oncogene product may determine, at least in part, the extent of the parvoviral cytopathic effect. Although ts 339/NRK cells were quite resistant to parvoviral attack at 39.5 degrees C, they were similarly proficient in MVMp uptake, viral DNA and protein synthesis, and infectious particle production at both permissive and restrictive temperatures. Consistently, electron microscopic examination of infected ts 339/NRK cultures incubated at 39.5 degrees C revealed the presence, in the majority of the cells, of numerous full and empty virions that were predominantly located in autophagic-type vacuoles. Thus, in this system, the reversion of transformed and MVMp-sensitive phenotypes appears to correlate with the setting up of a noncytocidal mode of parvovirus production. These results raise the possibility that the physiological state of host cells may affect their susceptibility to parvoviruses by modulating not only their capacity for virus replication but also cellular processes controlling the cytopathic effect of viral products.  相似文献   

14.
The adenovirus single-stranded DNA-binding protein (DBP) is an essential factor in viral DNA replication. Three temperature-sensitive (ts) adenoviruses (Ad2+ND1ts23, Ad2ts111A, and Ad5ts125) are known to have single amino acid substitutions in their DBPs that result in defective DNA replication at the nonpermissive temperature. To elucidate the mechanism(s) involved in the ts phenotype, we purified the three mutant DBPs and studied their DNA-binding properties and their ability to support DNA replication in an in vitro system. The results confirm that the three ts DBPs were incapable of supporting DNA replication at the nonpermissive temperature (40 degrees C). The defect was found at both the initiation and elongation steps of DNA replication. The 2-fold stimulation of pTP.dCMP formation by the DBP was lost by prior heating of the ts DBPs. The pronounced effect of the DBP on the early elongation process was severely diminished, but not abolished, by prior heating to 40 degrees C. The functional change at 40 degrees C was irreversible, as the ts DBPs preincubated at 40 degrees C were no longer active when assayed at 30 degrees C. Upon heating to 40 degrees C, all three ts DBPs lost their ability to bind to oligonucleotides, although they still retained some binding activity for large single-stranded DNAs such as M13 DNA. Thus, the inability of these three ts DBPs to support DNA replication is attributable to their altered DNA-binding properties.  相似文献   

15.
Ishii K  Moss B 《Journal of virology》2001,75(4):1656-1663
Previous analyses of randomly generated, temperature-sensitive vaccinia virus mutants led to the mapping of DNA synthesis negative complementation groups to the B1R, D4R, D5R, and E9L genes. Evidence from the yeast two-hybrid system that the D4R and D5R proteins can interact with the A20R protein suggested that A20R was also involved in DNA replication. We found that the A20R gene was transcribed early after infection, consistent with such a role. To investigate the function of the A20R protein, targeted mutations were made by substituting alanines for charged amino acids occurring in 11 different clusters. Four mutants were not isolated, suggesting that they were lethal, two mutants exhibited no temperature sensitivity, two mutants exhibited partial temperature sensitivity, and two mutants formed no plaques or infectious virus at 39 degrees C. The two mutants with stringent phenotypes were further characterized. Temperature shift-up experiments indicated that the crucial period was between 6 and 12 h after infection, making it unlikely that the defect was in virus entry, early gene expression, or a late stage of virus assembly. Similar patterns of metabolically labeled viral early proteins were detected at permissive and nonpermissive temperatures, but one mutant showed an absence of late proteins under the latter conditions. Moreover, no viral DNA synthesis was detected when cells were infected with either stringent mutant at 39 degrees C. The previous yeast two-hybrid analysis together with the present characterization of A20R temperature-sensitive mutants suggested that the A20R, D4R, and D5R proteins are components of a multiprotein DNA replication complex.  相似文献   

16.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

17.
Human adenovirus type 5 and temperature-sensitive mutants ts36, ts37, and ts125 induced cellular DNA synthesis in quiescent rodent cells at both permissive and nonpermissive temperatures. Cellular DNA synthesis induced by adenovirus type 5 or by serum required protein synthesis for both initiation and continuation, whereas viral DNA synthesis was not dependent upon continued protein synthesis once it was initiated. Both cellular and viral DNA replication was induced in adenovirus type 5-infected cells in the presence of dibutyryl cyclic AMP at concentrations which inhibited induction by serum which suggested that some of the controls of DNA synthesis in serum-treated and virus-infected cells are different. After adenovirus infection of quiescent cells, there was a decrease in the number of cells with G1 DNA content and an increase in cells with G2 diploid and greater DNA contents. Thus, adenovirus type 5 induces a complete round of cellular DNA replication, but in some cells, it induces a second round without completion of a normal mitosis. These results suggest that adenovirus type 5 is able to alter cell growth cycle controls in a way which may be related to its ability to transform cells.  相似文献   

18.
19.
Cultures of ts BN75, a temperature-sensitive mutant of BHK 21 cells, show a gradual biphasic drop in [3H]thymidine incorporation together with an accumulation of cells having a G2 DNA content when incubated at 39.5 degrees. However, when higher (41 degrees - 42 degrees) nonpermissive temperatures were used, the major block was in S-phase DNA synthesis. The cultures of ts BN75 shifted to 42 degrees at the start of the S phase, cell-cycle progress was arrested in the middle of S, while under these conditions wild-type BHK cells underwent at least one cycle of DNA synthesis. When ts BN75 cells growth-arrested at high temperature with a G2 DNA content were shifted to the permissive temperature (33.5 degrees C), the restart of DNA synthesis preceded the appearance of mitotic cells. These data suggest that the ts defect of ts BN75 cells might affect primarily the S phase of the cycle rather than the G2 phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号