首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their immutable nature, metals are a group of pollutants of much concern. As a result of human activities such as mining and smelting of metalliferous ores, electroplating, gas exhaust, energy and fuel production, fertilizer and pesticide application, etc., metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology, that uses the remarkable ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, appears very promising for the removal of pollutants from the environment. Within this field of phytoremediation, the utilization of plants to transport and concentrate metals from the soil into the harvestable parts of roots and above-ground shoots, i.e., phytoextraction, may be, at present, approaching commercialization. Improvement of the capacity of plants to tolerate and accumulate metals by genetic engineering should open up new possibilities for phytoremediation. The lack of understanding pertaining to metal uptake and translocation mechanisms, enhancement amendments, and external effects of phytoremediation is hindering its full scale application. Due to its great potential as a viable alternative to traditional contaminated land remediation methods, phytoremediation is currently an exciting area of active research.  相似文献   

2.
Phytoremediation of organic contaminants in soils   总被引:50,自引:0,他引:50  
Soil pollution, a very important environmental problem, has been attracting considerable public attention over the last decades. Unfortunately, the enormous costs associated with the removal of pollutants from soils by means of traditional physicochemical methods have been encouraging companies to ignore the problem. Phytoremediation is an emerging technology that uses plants to clean up pollutants in the environment. As overwhelmingly positive results have become available regarding the ability of plants to degrade certain organic compounds, more and more people are getting involved in the phytoremediation of organic contaminants. Phytoremediation of organics appears a very promising technology for the removal of these contaminants from polluted sites.  相似文献   

3.
There are very few practical demonstrations of the phytoextraction of metals and metalloids from soils and sediments beyond small-scale and short-term trials. The two approaches used have been based on using 1) hyperaccumulator species, such as Thlaspi caerulescens (Pb, Zn, Cd, Ni), Alyssum spp. (Ni, Co), and Pteris vittata (As) or 2) fast-growing plants, such as Salix and Populus spp. that accumulate above-average concentrations of only a smaller number of the more mobile trace elements (Cd, Zn, B). Until we have advanced much more along the pathway of genetic isolation and transfer of hyperaccumulator traits into productive plants, there is a high risk in marketing either approach as a technology or stand-alone solution to clean up contaminated land. There are particular uncertainties over the longer-term effectiveness of phytoextraction and associated environmental issues. Marginally contaminated agricultural soils provide the most likely land use where phytoextraction can be used as a polishing technology. An alternative and more useful practical approach in many situations currently would be to give more attention to crops selected for phytoexclusion: selecting crops that do not translocate high concentrations of metals to edible parts. Soils of brownfield, urban, and industrial areas provide a large-scale opportunity to use phytoremediation, but the focus here should be on the more realistic possibilities of risk-managed phytostabilization and monitored natural attenuation. We argue that the wider practical applications of phytoremediation are too often overlooked. There is huge scope for cross-cutting other environmental agenda, with synergies that involve the recovery and provision of services from degraded landscapes and contaminated soils. An additional focus on biomass energy, improved biodiversity, watershed management, soil protection, carbon sequestration, and improved soil health is required for the justification and advancement of phytotechnologies.  相似文献   

4.
Toxic heavy metals and metalloids, such as cadmium, lead, mercury, arsenic, and selenium, are constantly released into the environment. There is an urgent need to develop low-cost, effective, and sustainable methods for their removal or detoxification. Plant-based approaches, such as phytoremediation, are relatively inexpensive since they are performed in situ and are solar-driven. In this review, we discuss specific advances in plant-based approaches for the remediation of contaminated water and soil. Dilute concentrations of trace element contaminants can be removed from large volumes of wastewater by constructed wetlands. We discuss the potential of constructed wetlands for use in remediating agricultural drainage water and industrial effluent, as well as concerns over their potential ecotoxicity. In upland ecosystems, plants may be used to accumulate metals/metalloids in their harvestable biomass (phytoextraction). Plants can also convert and release certain metals/metalloids in a volatile form (phytovolatilization). We discuss how genetic engineering has been used to develop plants with enhanced efficiencies for phytoextraction and phytovolatilization. For example, metal-hyperaccumulating plants and microbes with unique abilities to tolerate, accumulate, and detoxify metals and metalloids represent an important reservoir of unique genes that could be transferred to fast-growing plant species for enhanced phytoremediation. There is also a need to develop new strategies to improve the acceptability of using genetically engineered plants for phytoremediation.  相似文献   

5.

Toxic heavy metals and metalloids, such as cadmium, lead, mercury, arsenic, and selenium, are constantly released into the environment. There is an urgent need to develop low-cost, effective, and sustainable methods for their removal or detoxification. Plant-based approaches, such as phytoremediation, are relatively inexpensive since they are performed in situ and are solar-driven. In this review, we discuss specific advances in plant-based approaches for the remediation of contaminated water and soil. Dilute concentrations of trace element contaminants can be removed from large volumes of wastewater by constructed wetlands. We discuss the potential of constructed wetlands for use in remediating agricultural drainage water and industrial effluent, as well as concerns over their potential ecotoxicity. In upland ecosystems, plants may be used to accumulate metals/metalloids in their harvestable biomass (phytoextraction). Plants can also convert and release certain metals/metalloids in a volatile form (phytovolatilization). We discuss how genetic engineering has been used to develop plants with enhanced efficiencies for phytoextraction and phytovolatilization. For example, metal-hyperaccumulating plants and microbes with unique abilities to tolerate, accumulate, and detoxify metals and metalloids represent an important reservoir of unique genes that could be transferred to fast-growing plant species for enhanced phytoremediation. There is also a need to develop new strategies to improve the acceptability of using genetically engineered plants for phytoremediation.

  相似文献   

6.
低放核素污染土-水介质的植物修复研究进展   总被引:2,自引:0,他引:2  
张晓雪  王丹  闻方平 《西北植物学报》2008,28(12):2571-2574
植物修复技术是利用植物根系吸收水分和养分的过程来吸收和转化土壤和水体中的污染物,以期达到清除,修复和治理的目的,是用于对土壤-水体中重金属和放射性核素污染清除的生态技术.本文就放射性核素的来源、污染现状、植物对放射性核素的积累筛选以及对污染土壤的修复研究进行综述,以明确植物修复技术在改善环境中的作用,为进一步筛选超积累植物并探讨植物对放射性核素污染的修复机理提供参考.  相似文献   

7.
蚯蚓对土壤中铜、镉生物有效性的影响   总被引:52,自引:4,他引:52  
俞协治  成杰民 《生态学报》2003,23(5):922-928
以第四纪红黏土红壤和长江冲积物形成的高砂土为供试土壤、分别加入3个浓度的Cu^2 (100、200、400mg/kg)或Cd^2-(5.10、20mg/kg)模拟土壤污染.设置接种蚯蚓(Pheretima sp.)处理与不加蚯蚓对照.并种植黑麦草(Lolium multiflorum)、研究蚯蚓活动对土壤中Cu、Cd生物有效性的影响.以揭示蚯蚓在植物修复重金属污染土壤中的作用。结果表明:蚯蚓活动显著增加红黏中DTPA提取态Cu的含量、只有在浓度低于200mg/kgCu的处理中.才能增加CaCl2提取态Cu的含量.对H2O提取态Cu影响甚微;而对高砂土上Cu、Cd的各种形态影响均不显著;除红黏中浓度高于100mg/kgCu和10mg/kgCd处理外.蚯蚓活动显著提高了两种土壤上黑麦草地上部的生物量;接种蚯蚓后各种重金属处理中黑麦草对Cu的吸收量也显著增加,而Cd的吸收量变化不大。蚯蚓可能通过提高重金属的生物有效性而间接影响植物对重金属的修复效率。  相似文献   

8.
Göhre V  Paszkowski U 《Planta》2006,223(6):1115-1122
High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.  相似文献   

9.
Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals, but is generally perceived to be too slow. Enhancing accumulation of trace pollutants in harvestable plant tissues is a prerequisite for such technology to be practical. The main aims of this paper were to investigate whether a combination of nutrients and ethylenediaminetetraacetic acid (EDTA) enhanced Pb uptake of sunflower (Helianthus annuus) plants, and if timing of EDTA application altered Pb uptake and environmental persistence. Plants were grown in greenhouse pot experiments. Pb distributions and uptake of the whole plant were studied using chemical and flame atomic absorption spectrometry analyses. Pb mobilization by EDTA appeared to be dose dependent, with more mobilization for the high than the low dose. There were distinct differences in mobilization patterns of various nutrient amendments. EDTA mobilized Pb more in the medium than the highest and lowest nutrient levels. Heterogeneous soil humus components exerted mobilizing and stabilizing effects, so the medium nutrition was most effective for phytoextraction. At low nutrient levels, Pb concentration in the shoot with one low EDTA application was less than two applications to the same total EDTA dosage. So in the poor soil, two applications of EDTA was more effective than once. The half-life of two low EDTA treatment applications was longer than for one application, to the same total dosage. In general, sunflower was suited to phytoremediation of moderately Pb-contaminated soil by phytoextraction.  相似文献   

10.
Technogenic activities (industrial—plastic, textiles, microelectronics, wood preservatives; mining—mine refuse, tailings, smelting; agrochemicals—chemical fertilizers, farm yard manure, pesticides; aerosols—pyrometallurgical and automobile exhausts; biosolids—sewage sludge, domestic waste; fly ash—coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.  相似文献   

11.
根系分泌物及其在植物修复中的作用   总被引:53,自引:0,他引:53       下载免费PDF全文
 近年来环境污染日益严重,污染物在土壤植物中的行为引起了人们的高度关注。利用植物去除土壤水体等介质中污染物的植物修复是近10年来兴起的一项安全、廉价的技术,已成为污染生态学和环境生态学的研究热点,它通过植物吸收、根滤、稳定、挥发等方式清除环境中的重金属和有机污染物。国内外有关植物修复的研究报道和概述很多, 但对植物根系分泌物在植物修复中所起的作用及其机理少有述评。 本文从根系分泌物对土壤重金属和土壤有机污染物的去除作用出发,对根系分泌物的种类、数量及其在去除环境污染物中的作用机理和功能地位进行了总结,并借助研究事例对影响植物根系分泌的内外因子,如植物种类、营养胁迫、重金属胁迫、根际环境的理化性质、土壤微生物及其它环境因子进行了讨论。概言之,根系分泌物在修复污染土壤中的重金属途径是多种多样的,主要是通过调节根际pH值、与重金属形成螯合物、络合反应、沉淀、提高土壤微生物数量和活性来改变重金属在根际中的存在形态以及提高重金属的生物有效性,从而减轻它对环境的危害。在清除有机污染物时,根系分泌物中的酶可以对有机污染物进行直接降解,根系分泌物影响下的微生物也可以对有机污染物进行间接降解,且被认为是主要的降解途径。根系分泌物在植物修复过程中确实起着某些重要作用,今后应将这方面的研究重点放在某些特异性根系分泌物植物,尤其是某些重金属超富集植物资源的寻找、筛选上,通过室内实验和野外研究确定其根系分泌物对清除重金属和有机污染物的效率,证实超富集植物根系分泌物的特异性与污染物超富集的内在联系,找到污染土壤生态恢复和治理的有效方法并加以推广应用,如针对性地在被污染地大面积种植此类具特异性根分泌物植物,并辅以营林措施如修剪等,加快生物修复进程,提高修复效率。植物根系分泌物在植物修复过程中所具有的重要生态意义和可能应用前景,为污染生态学和化学生态学之间的联合研究开拓了全新的领域,今后将取得新的突破和重要进展。  相似文献   

12.
Using hyperaccumulator plants to phytoextract soil Ni and Cd   总被引:2,自引:0,他引:2  
Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.  相似文献   

13.
Using the perspective of full scale application of phytoremediation techniques, research is focusing on the optimization of agronomic practices. Two annual high biomass yield crops, Sorghum bicolor and Helianthus annuus, were grown in a polymetallic soil. The experimental site, polluted by pyrite cinders, is located in an industrial site that has been listed in the clean-up national priority list since 2001. Specific aims of this work were to observe the concentration of metals in plants during the crop cycle and to establish the amount of metal removed by the crops. The field trial, arranged in a randomized block design, started in 2005. The concentrations of heavy metals in the soil were: As 309, Cd 4.29, Co 50.9, Cu 1527 and Zn 980mg kg(-1). The crops grown on the polluted soil received mineral fertilization (Fert) and organic amendment (Org), while plants in control soil (Ctrl) did not receive anything. The plots were watered during the crop cycle during two drought periods, using a sprinkler irrigation system. The phytoextraction potential of crops was estimated during the whole growth cycle and the plant biomass that was collected in each sampling date was ICP-analyzed. Plant-biomass growth curves were obtained. The concentrations of the metals in the shoots and in the total plant biomass were recorded. Finally, the metal removal was calculated for the harvestable parts of the crops. The amelioration of the nutritive status of the substrate that resulted, was highly effective for the biomass yield. However, fertilization and soil amendment did not heighten the concentration of metals in the harvestable tissue of the plants during the crop cycle. In some cases, organic matter appeared to bind the elements making them less available for the plants. The evaluation of the potential of phytoremediation of our plants compared to other crops in terms of metal removal was positive. Our results of metal removal are consistent with the results from other in situ experiments. The Zn removal by S. bicolor and H. annuus reached about 2000g ha(-1) and 1000g ha(-1), respectively.  相似文献   

14.
Heavy metals are among the major pollutants from anthropogenic inputs that reach mangrove ecosystem by urban and agricultural runoff, industrial effluents, boating, mining and other processes. To minimize the detrimental effects of heavy metal exposure and their accumulations, plants in general have evolved biological detoxification mechanisms, which include avoidance or exclusion, excretion and accumulation. To protect the cellular components from oxidative damage by heavy metal contamination, biological systems have developed enzymatic and non-enzymatic antioxidant mechanisms. Another detoxification mechanisms produced in plants are osmoprotectants, which are the compatible solutes which maintain a favourable water potential gradient and protect cellular structures from toxic ions. Besides these mechanisms, another heavy metal detoxification system in plants involves the chelation of metals by metal binding molecules like metallothioneins (MTs) and phytochelatins (PCs). To limit the heavy metal toxicity from mangrove ecosystem, it was found that phytoremediation is a most useful technology where in plants are used to remove pollutants from the environment and it is considered as a comparatively new, low-cost and highly promising technology for the remediation of heavy metal. Rhizofiltration, phytovolatilization, phytoextraction and phytostabilization are the important phytoremediation techniques. Among these phytoextraction and phytostabilization are found highly important in the case of mangroves and are promising means of phytoremediation.  相似文献   

15.
湿地系统中植物和土壤在治理重金属污染中的作用   总被引:3,自引:0,他引:3  
重金属污染环境的治理是目前环境工程的核心课题。湿地作为水陆相互作用形成的独特生态系统,在重金属污染治理中的作用倍受关注。对湿地植物、土壤在治理重金属污染中所起的关键作用及其机理做一综述,并对治理重金属污染的湿地构建提出几点建议。  相似文献   

16.
The metal accumulation potential of Chenopodium album L. grown on various amendments of tannery sludge (TS) was studied after 60 days of sapling planted. The analysis of the results showed that the levels of pH, cation exchange capacity, organic carbon, organic matter and DTPA extractable metals (except Mn) of amendments increased by the addition of tannery sludge ratio. Shoot length of the plant increased by the addition of sludge, whereas, no marked change was observed in root length, fresh and dry weight of the plant. Accumulation of the metals in the plants was found in the order; Fe > Mn > Zn > Cr > Cu > Pb > Ni > Cd. Translocation of toxic metals (Cr, Pb, Cd) in different parts of the tested plant was found in the order; leaves > stems > roots. An increase in the photosynthetic pigments, carotenoid and leaf protein contents of the plants were found to increase with increase in sludge amendments. Correlation analysis between metal accumulation in the plants with DTPA extractable metals emphasized that Mn, Ni, Cr, Pb and Cd showed positive correlation (p < 0.05), whereas, Fe, Zn and Cu showed negative correlation. Transfer factor analysis emphasized that 10% TS amendments were suitable for phytoextraction of Cr. Overall analysis of the data exhibited that the plants may be used for phytoextraction of Cr from tannery waste contaminated soil as most of the metal was accumulated in harvestable part which is a matter of serious concern, whenever used for edible purposes.  相似文献   

17.
One of the most serious and long-term consequences of environmental pollution is heavy metal contamination of soils. Elements such as zinc, cadmium, lead, nickel, and chromium are being released into the environment by many industrial processes and have now reached concentrations that are of concern. Phytoremediation is a new, low-cost, and environmentally friendly technique that relies on the natural properties of some plants to clean-up the ground through their ability to take up metals from the soil. Hyperaccumulator plants, capable of accumulating metals far in excess of any normal physiological requirement, represent a most promising tool for metal phytoextraction, but the in field establishment of their conditions for utilization needs a long period because of the plant life-cycle. The use of a mathematical model is proposed to process growth and uptake data from in vitro experiments for a rapid assessment of the time and concentration parameters for the deployment of hyperaccumulator plants for phytoextraction purposes. This preliminary research has been carried out using Alyssum bertolonii Desv., a nickel hyperaccumulator endemic to Italian serpentine soils.  相似文献   

18.
Phytoextraction is the removal of metals from contaminated soils into harvested plant tissues. The rate of phytoextraction is governed by both soil and plant characteristics. Most effort has focused on identifying appropriate plants for phytoextraction, but the benefits from this effort will be marginal unless the metals are in phytoavailable forms in the rhizosphere. The concentration of a metal in the rhizosphere can be estimated using solute transfer models that incorporate: the metal concentration in the bulk soil solution, the buffer power of the soil, diffusion coefficient for the metal, water movement, root size and morphology, and the rate of entry of metal into the roots. Here a solute transfer model is developed to predict the concentration of Zn in the rhizosphere solution ([Zn]ext) of Thlaspi caerulescens, a hyperaccumulator species that could be exploited for Zn phytoextraction. The model predicts that Zn accumulation by T. caerulescens is sub-optimal when the Zn concentration in the bulk soil solution is <27 M. Such a high [Zn]ext is rare in contaminated agricultural soils, but is possible in the metalliferous substrates where T. caerulescens is endemic. Sensitivity analyses indicate that Zn diffusion is more important than transpiration-driven mass flow for Zn delivery to the root, implying that management of soil physical and hydrological properties will improve phytoextraction. Sensitivity analyses also imply that strategies to enhance the Zn absorption power of the root will not necessarily be successful for enhancing phytoextraction per se. Thus, research into enhancing Zn availability and mobility in soil will be as important as understanding and manipulating Zn uptake by plants. In general, such models can be used to identify constraints to efficient phytoextraction (whether plant or soil) and to determine whether commercial phytoextraction is feasible.  相似文献   

19.
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.  相似文献   

20.
Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms   总被引:2,自引:0,他引:2  
Heavy metals (HM) are a unique class of toxicants since they cannot be broken down to non-toxic forms. Concentration of these heavy metals has increased drastically, posing problems to health and environment, since the onset of the industrial revolution. Once the heavy metals contaminate the ecosystem, they remain a potential threat for many years. Some technologies have long been in use to remove, destroy and sequester these hazardous elements. Even though effective techniques for cleaning the contaminated soils and waters are usually expensive, labour intensive, and often disturbing. Phytoremediation, a fast-emerging new technology for removal of toxic heavy metals, is cost-effective, non-intrusive and aesthetically pleasing. It exploits the ability of selected plants to remediate pollutants from contaminated sites. Plants have inter-linked physiological and molecular mechanisms of tolerance to heavy metals. High tolerance to HM toxicity is based on a reduced metal uptake or increased internal sequestration, which is manifested by interaction between a genotype and its environment. The growing interest in molecular genetics has increased our understanding of mechanisms of HM tolerance in plants and many transgenic plants have displayed increased HM tolerance. Improvement of plants by genetic engineering, i.e., by modifying characteristics like metal uptake, transport and accumulation and plant’s tolerance to metals, opens up new possibilities of phytoremediation. This paper presents an overview of the molecular and physiological mechanisms involved in the phytoremediation process, and discusses strategies for engineering plants genetically for this purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号