共查询到20条相似文献,搜索用时 0 毫秒
1.
Reconstitution of RecBC DNase activity from purified Escherichia coli RecB and RecC proteins 总被引:8,自引:0,他引:8
I D Hickson C N Robson K E Atkinson L Hutton P T Emmerson 《The Journal of biological chemistry》1985,260(2):1224-1229
The Escherichia coli RecB protein, normally synthesized in low amounts, has been amplified by linkage of the recB gene to the phage lambda leftward promoter in an expression plasmid. From strains harboring this plasmid, RecB protein has been purified to homogeneity by a simple procedure which includes affinity chromatography on a column of RecC protein bound to agarose. The purified RecB protein has DNA-dependent ATPase activity but no exonuclease activity. RecC protein alone has neither ATPase nor exonuclease activity. However, when combined together, the RecB and RecC proteins show the ATP-dependent double-stranded exonuclease properties characteristic of the RecBC DNase. 相似文献
2.
In wild-type Escherichia coli, recognition of the recombination hotspot, chi (5'-GCTGGTGG-3'), by the RecBCD enzyme is central to homologous recombination. However, in the recC* class of RecBCD mutants, stimulation of recombination by the canonical chi sequence is not detectable, but the levels of homologous recombination are nearly wild-type. In vivo studies demonstrate that a member of this class of mutants, the recC1004 allele, encodes an enzyme that responds to a novel variant of chi, termed chi* (5'-GCTGGTGCTCG-3'). Here, we establish that, in vitro, the chi* sequence is recognized more efficiently by the RecBC(1004)D enzyme than is the wild-type chi. This is manifest by both a greater modification of nuclease activity and a higher stimulation of RecA protein-mediated joint molecule formation at chi* than at chi. Sequencing of the recC1004 gene revealed that it contains a frameshift mutation, which results in a replacement of nine of the wild-type amino acid residues by eight in the mutant protein, and defines a locus that is important for the specificity of chi-recognition. In addition, we show that this novel, 11 nucleotide chi* sequence also regulates the wild-type RecBCD enzyme, supporting the notion that variants of the canonical chi constitute a class of sequences that regulate the recombination function of RecBCD enzyme. 相似文献
3.
Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli 总被引:23,自引:0,他引:23
The RecBC enzyme of Escherichia coli promotes genetic recombination of phage or bacterial chromosomes. The purified enzyme travels through duplex DNA, unwinding and rewinding the DNA with the transient production of potentially recombinogenic single-stranded DNA. The studies reported here are aimed at understanding which chromosomal forms allow the entry of RecBC enzyme and hence may undergo RecBC enzyme-mediated recombination. Circular duplex molecules, whether covalently closed, nicked or containing single-stranded gaps of 10 to 774 nucleotides, are not detectably unwound by RecBC enzyme. Linear duplex molecules are readily unwound if they have a nearly flush-ended terminus whose 5' and 3' ends are offset by no more than about 25 nucleotides; molecules with longer single-stranded tails are poorly bound by RecBC enzyme and are infrequently unwound. The single-strand endonuclease activity of RecBC enzyme can slowly cleave gapped circles to produce molecules presumably capable of being unwound. These results provide an enzymatic basis for the recombinogenicity of double-stranded DNA ends established from genetic studies of RecBC enzyme and Chi sites, recognition sites for RecBC enzyme-mediated DNA strand cleavage. 相似文献
4.
Shutoff of respiration is one of a number of recA+ lexA+ dependent (SOS) responses caused by far ultraviolet (245 nm) radiation (UV) damage of DNA in Escherichia coli cells. Thus far no rec/lex response has been shown to require the recB recC gene product, the RecBC enzyme. We report in this paper that UV-induced respiration shutoff did not occur in either of these radiation-sensitive derivatives of K12 strain AB1157 nor in the recB recC double mutant. The sbcB gene product is exonuclease I and it has been reported that the triple mutant strain recB recC sbcB has near normal recombination efficiency and resistance to UV. The sbcB strain shut off its respiration after UV but the triple mutant did not show UV-induced respiration shutoff; the shutoff and death responses were uncoupled. We concluded that respiration shutoff requires RecBC enzyme activity. The RecBC enzyme has ATP-dependent double-strand exonuclease activity, helicase activity and several other activities. We tested a recBC+ (double dagger) mutant strain (recC 1010) that had normal recombination efficiency and resistance to UV but which possessed no ATP-dependent double-strand exonuclease activity. This strain did not shut off its respiration. The presence or absence of other RecBC enzyme activities in this mutant is not known. These results support the hypothesis that ATP-dependent double-strand exonuclease activity is necessary for UV-induced respiration shutoff. 相似文献
5.
The repair response of Escherichia coli K-12 to bleomycin was examined in Rec- mutants showing differential sensitivity to this agent. Sedimentation analysis of the cellular DNA showed incision after bleomycin treatment. The subsequent reformation of the DNA, found in the wild-type and the recD mutant, was abolished in the recB and delayed in the recF and recBC sbcB mutants. The bleomycin-induced SOS response was reduced in strains containing recB or recBC sbsB mutations. It is suggested that the RecBCD pathway has the main role in the efficient repair of bleomycin-induced DNA damage. 相似文献
6.
Gerald R. Smith Franklin W. Stahl 《BioEssays : news and reviews in molecular, cellular and developmental biology》1985,2(6):244-249
Chi sites are examples of special sites enhancing homologous recombination in their region of the chromosome. Chi, 5′ G-C-T-G-G-T-G-G3′, is a recognition site for the RecBC enzyme, which nicks DNA near Chi as it unwinds DNA. A molecular model of genetic recombination incorporating these features is reviewed. 相似文献
7.
Assimilatory sulfate reduction in an Escherichia coli mutant lacking thioredoxin activity. 总被引:4,自引:0,他引:4
An investigation of sulfate reduction in B tsnC*7004, a mutant of Escherichia coli lacking thioredoxin, is reported. Although thioredoxin is indispensable for the adenosine 3'-phosphate 5'-phosphosulfate (PAPS) sulfotransferase reaction under the usual conditions of assay in extracts of wild-type cells, the mutant grew as well as the wild type on sulfate, indicating that sulfate reduction is not rate limiting for growth. Another cofactor for the PAPS sulfotransferase reaction was found in extracts of the mutant that is absent from wild type cells. This cofactor was indistinguishable from thioredoxin in molecular weight but had a slightly different isoelectric point, allowing a separation of the two types of molecules by isoelectric focusing. Whereas electrons from nicotinamide adenine dinucleotide phosphate, reduced form, could be transferred via thioredoxin reductase or via glutathione and glutathione reductase to reduce thioredoxin in extracts of wild-type cells, electrons from nicotinamide adenine dinucleotide, reduced form, could only be transferred to the cofactor of the mutant via glutathione and glutathione reductase. All of the other available mutants blocked in sulfate reduction in E. coli contained normal levels of thioredoxin. The "PAPS reductase" mutant is shown to be blocked in the PAPS sulfotransferase reaction. We conclude that the cofactor found in mutant B tsnC*7004 is probably a mutated thioredoxin with an amino acid substitution that alters the isoelectric point and the reactivity with thioredoxin reductase. 相似文献
8.
Chi sites promote Rec-mediated recombination in bacteriophage λ. Nine independent, nitrous acid-induced mutations were obtained within one of these sites, χ+C. Eight of the mutations completely inactivated the Chi site, while one mutation left partial activity. Nucleotide sequence analysis showed that the mutations were located at four different sites one to four base-pairs from the site of the χ+C mutation that created the active Chi locus. This interval is within a region of homology common to the χ+C locus and another sequenced Chi locus, χ+B. These results support the view that Chi is a unique nucleotide sequence and suggest the extent of the Chi sequence. 相似文献
9.
Chi hotspot activity in Escherichia coli without RecBCD exonuclease activity: implications for the mechanism of recombination 下载免费PDF全文
The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination. 相似文献
10.
Escherichia coli B/r leuK mutant lacking pseudouridine synthase I activity. 总被引:1,自引:1,他引:1 下载免费PDF全文
L L Searles J W Jones M J Fournier N Grambow B Tyler J M Calvo 《Journal of bacteriology》1986,166(1):341-345
Escherichia coli B/r strain EB146 containing mutation leuK16 has elevated levels of enzymes involved in the synthesis of leucine, valine, isoleucine, histidine, and tryptophan (Brown et al., J. Bacteriol. 135:542-550, 1978). We show here that strain EB146 (leuK16) has properties that are similar to those of E. coli and Salmonella typhimurium hisT strains. In tRNA1Leu from both hisT and leuK strains, positions 39 and 41 are uridine residues rather than pseudouridine residues. Furthermore, in tRNA3Leu and tRNA4Leu from a leuK strain, uridine residues at positions 39 and 40, respectively, are unmodified. Pseudouridine synthase I activity is missing in extracts of strain EB146 (leuK16), and extracts of strain EB146 (leuK16) and of a hisT strain do not complement one another in vitro. Four phenotypes of strain EB146 (leuK16), leucine excretion, wrinkled colony morphology, and elevated levels of leu and his enzymes, are complemented by a plasmid having a 1.65-kilobase DNA fragment containing the E. coli K-12 hisT locus. These results indicate that either leuK codes for pseudouridine synthase I (and is thus a hisT locus in reality) or, less likely, it codes for a product that affects the synthesis or activity of pseudouridine synthase I. 相似文献
11.
Lentiviral expression clones, which contain long direct repeats, often show dramatic instability in Escherichia coli, leading to difficulties in obtaining valid clones. We show that the reduced-genome E. coli strain MDS42 is capable of stabilizing lentiviral expression clones containing direct repeats, and outperforms many commonly used cloning strains for this purpose. In addition, the strain has several characteristics that make it highly amenable for use in recombinational cloning systems. 相似文献
12.
E Priel 《Cell biology international reports》1984,8(9):773-786
In the present study we investigated the possible involvement of DNA-Gyrase in postreplication repair in E. Coli. It was observed that nalidixic acid and oxolinic acid (which are known-antagonists of DNA-Gyrase) inhibited recombinational repair. These results strongly suggest that the nicking closing activity of DNA-Gyrase is essential for efficient recombinational repair. 相似文献
13.
Nucleotide sequence of the chi recombinational hot spot chi +D in bacteriophage lambda. 总被引:4,自引:0,他引:4 下载免费PDF全文
Chi sites in bacteriophage lambda stimulate recombination promoted by the RecBC pathway of Escherichia coli. Mutations which create these sites occur at four widely separated loci in lambda. We report here the nucleotide sequence surrounding the site of one of these loci, chi D, located near the S gene. The mutations creating the active Chi site, designated chi +D, are transversions from CG to AT. This mutation, like the chi +B and chi +C mutations previously analyzed, leads to a nucleotide sequence common to all three active chi sites. 相似文献
14.
In E. coli rnh− mutants we identified chromosome-derived, specific DNA fragments termed Hot DNA. When the DNA in the ccc form is integrated into the E. coli genome by homologous recombination to form a directly repeated structure, a striking enhancement of excisional recombination between the repeats occurs. We obtained 8 groups of such Hot DNA, 7 of which were clustered in a narrow region called the replication terminus region (about 280 kb) on the circular E. coli genome. A Ter site can impede the replication fork in a polar fashion. The six Ter sites are approximately symmetrical in the terminus and surrounding region. To block the fork at the Ter site, a protein factor, Ter binding protein encoded in the tau (or tus) gene, is required. In tau− cells, Hot activity of HotA, B, and C DNAs disappears, thereby indicating that the Hot activity is fork arrest-dependent. Other Hot activities were tau-independent. In addition, for at least HotA activity, the presence of Chi, an E. coli recombinational hotspot sequence, is required; the Chi dependent HotA activity was detected in a wild type strain but to a lesser extent than that in the rnh− mutant. To explain the HotA phenomenon at the molecular level, we propose a model in which a ds-break occurs at the replication fork arrested at the Ter site. Our recent data that HOT1, a yeast recombinational hotspot, may also depend on the fork blocking event for activity, suggests that a similar ds-break occurs in both eucaryotes and procaryotes. 相似文献
15.
Membrane-derived oligosaccharides (MDO) consist of branched substituted beta-glucan chains and are present in the periplasmic space of Escherichia coli and other gram-negative bacteria. A procedure for the isolation of mutants defective in MDO synthesis is described. Their phenotype was compared with a mdoA mutant previously identified, and they are mapped in the mdoA region. Mutants lacking MDO showed imparied chemotaxis on tryptone swarm plates, a reduced number of flagella, and an enhanced expression of the OmpC porin. Revertants able to form swarm rings again had regained the ability to synthesize MDO and showed the wild-type porin pattern. A second group of chemotactic revertants were mutated in the ompB gene region involved in osmoregulation, and they were still devoid of MDO. These findings provide evidence for a link between MDO biosynthesis and other functions of E. coli related to its adaptation to the environment. 相似文献
16.
Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, is considered to play specific roles in various cellular processes that are essential for cell viability. A null mutation of pgsA, which encodes phosphatidylglycerophosphate synthase, does indeed confer lethality. However, pgsA null mutants are viable if they lack the major outer membrane lipoprotein (Lpp) (lpp mutant) (S. Kikuchi, I. Shibuya, and K. Matsumoto, J. Bacteriol. 182:371-376, 2000). Here we show that Lpp expressed from a plasmid causes cell lysis in a pgsA lpp double mutant. The envelopes of cells harvested just before lysis could not be separated into outer and inner membrane fractions by sucrose density gradient centrifugation. In contrast, expression of a mutant Lpp (LppdeltaK) lacking the COOH-terminal lysine residue (required for covalent linking to peptidoglycan) did not cause lysis and allowed for the clear separation of the outer and inner membranes. We propose that in pgsA mutants LppdeltaK could not be modified by the addition of a diacylglyceryl moiety normally provided by phosphatidylglycerol and that this defect caused unmodified LppdeltaK to accumulate in the inner membrane. Although LppdeltaK accumulation did not lead to lysis, the accumulation of unmodified wild-type Lpp apparently led to the covalent linking to peptidoglycan, causing the inner membrane to be anomalously anchored to peptidoglycan and eventually leading to lysis. We suggest that this anomalous anchoring largely explains a major portion of the nonviable phenotypes of pgsA null mutants. 相似文献
17.
Constitutive stable DNA replication in Escherichia coli cells lacking type 1A topoisomerase activity
《DNA Repair》2015
Type 1A topoisomerases (topos) are ubiquitous enzymes involved in supercoiling regulation and in the maintenance of genome stability. Escherichia coli possesses two type 1A enzymes, topo I (topA) and topo III (topB). Cells lacking both enzymes form very long filaments and have severe chromosome segregation and growth defects. We previously found that RNase HI overproduction or a dnaT::aph mutation could significantly correct these phenotypes. This leads us to hypothesize that they were related to unregulated replication originating from R-loops, i.e. constitutive stable DNA replication (cSDR). cSDR, first observed in rnhA (RNase HI) mutants, is characterized by its persistence for several hours following protein synthesis inhibition and by its requirement for primosome components, including DnaT. Here, to visualize and measure cSDR, the incorporation of the nucleotide analog ethynyl deoxyuridine (EdU) during replication in E. coli cells pre-treated with protein synthesis inhibitors, was revealed by “click” labeling with Alexa Fluor® 488 in fixed cells, and flow cytometry analysis. cSDR was detected in rnhA mutants, but not in wild-type strains, and the number of cells undergoing cSDR was significantly reduced by the introduction of the dnaT::aph mutation. cSDR was also found in topA, double topA topB but not in topB null cells. This result is consistent with the established function of topo I in the inhibition of R-loop formation. Moreover, our finding that topB rnhA mutants are perfectly viable demonstrates that topo III is not uniquely required during cSDR. Thus, either topo I or III can provide the type 1A topo activity that is specifically required during cSDR to allow chromosome segregation. 相似文献
18.
Increased ATP-dependent proteolytic activity in lon-deficient Escherichia coli strains lacking the DnaK protein. 总被引:1,自引:1,他引:1 下载免费PDF全文
Extracts made from Escherichia coli null dnaK strains contained elevated levels of ATP-dependent proteolytic activity compared with levels in extracts made from dnaK+ strains. This ATP-dependent proteolytic activity was not due to Lon, Clp, or Alp-associated protease. Comparison of the levels of ATP-dependent proteolytic activity present in lon rpoH dnaK mutants and in lon rpoH dnaK+ mutants showed that the level of ATP-dependent proteolytic activity was elevated in the lon rpoH dnaK mutant strain. These findings suggest that DnaK negatively regulates a new ATP-dependent proteolytic activity, independently of sigma 32. Other results indicate that an ATP-dependent proteolytic activity was increased in a lon alp strain after heat shock. It is not yet known whether the same protease is associated with the increased ATP-dependent proteolytic activity in the dnaK mutants and in the heat-shocked lon alph strain. 相似文献
19.
The ribonuclease III superfamily represents a structurally related group of double-strand (ds) specific endoribonucleases which play key roles in diverse prokaryotic and eukaryotic RNA maturation and degradation pathways. A dsRNA-binding domain (dsRBD) is a conserved feature of the superfamily and is important for substrate recognition. RNase III family members also exhibit a "catalytic" domain, in part defined by a set of highly conserved amino acids, of which at least one (a glutamic acid) is important for cleavage but not for substrate binding. However, it is not known whether the catalytic domain requires the dsRBD for activity. This report shows that a truncated form of Escherichia coli RNase III lacking the dsRBD (RNase III[DeltadsRBD]) can accurately cleave small processing substrates in vitro. Optimal activity of RNase III[DeltadsRBD] is observed at low salt concentrations (<60 mM Na(+)), either in the presence of Mg(2+) (>25 mM) or Mn(2+) ( approximately 5 mM). At 60 mM Na(+) and 5 mM Mn(2+) the catalytic efficiency of RNase III[DeltadsRBD] is similar to that of RNase III at physiological salt concentrations and Mg(2+). In the presence of Mg(2+) RNase III[DeltadsRBD] is less efficient than the wild-type enzyme, due to a higher K(m). Similar to RNase III, RNase III[DeltadsRBD] is inhibited by high concentrations of Mn(2+), which is due to metal ion occupancy of an inhibitory site on the enzyme. RNase III[DeltadsRBD] retains strict specificity for dsRNA, as indicated by its inability to cleave (rA)(25), (rU)(25), or (rC)(25). Moreover, dsDNA, ssDNA, or an RNA-DNA hybrid are not cleaved. Low (micromolar) concentrations of ethidium bromide block RNase III[DeltadsRBD] cleavage of substrate, which is similar to the inhibition seen with RNase III and is indicative of an intercalative mode of inhibition. Finally, RNase III[DeltadsRBD] is sensitive to specific Watson-Crick base-pair substitutions which also inhibit RNase III. These findings support an RNase III mechanism of action in which the catalytic domain (i) can function independently of the dsRBD, (ii) is dsRNA-specific, and (iii) participates in cleavage site selection. 相似文献
20.
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks. 相似文献