首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone unloading results in osteocyte apoptosis, which attracts osteoclasts leading to bone loss. Loading of bone drives fluid flow over osteocytes which respond by releasing signaling molecules, like nitric oxide (NO), that inhibit osteocyte apoptosis and alter osteoblast and osteoclast activity thereby preventing bone loss. However, which apoptosis-related genes are modulated by loading is unknown. We studied apoptosis-related gene expression in response to pulsating fluid flow (PFF) in osteocytes, osteoblasts, and fibroblasts, and whether this is mediated by loading-induced NO production. PFF (0.7 ± 0.3 Pa, 5 Hz, 1 h) upregulated Bcl-2 and downregulated caspase-3 expression in osteocytes. l-NAME attenuated this effect. In osteocytes PFF did not affect p53 and c-Jun, but l-NAME upregulated c-Jun expression. In osteoblasts and fibroblasts PFF upregulated c-Jun, but not Bcl-2, caspase-3, and p53 expression. This suggests that PFF inhibits osteocyte apoptosis via alterations in Bcl-2 and caspase-3 gene expression, which is at least partially regulated by NO.  相似文献   

2.
Osteocytes are the most abundant cells in bone and there is increasing evidence that they control bone remodeling via direct cell-to-cell contacts and by soluble factors. In the present study, we have used the MLO-Y4 cell line to study the effect of osteocytes on the proliferation, differentiation and bone-forming capacity of bone marrow mesenchymal stem cells (MSC). Conditioned media (CM) from osteocytic MLO-Y4 and osteoblastic MC3T3-E1 cell lines were collected and added on mouse bone marrow cultures, in which MSC were induced to osteoblasts. There was a significant increase in alkaline phosphatase activity and osteocalcin expression in the presence of MLO-Y4 CM. No such stimulus could be observed with MC3T3-E1 CM. There was almost 4-fold increase in bone formation and up to 2-fold increase in the proliferation of MSC with MLO-Y4 CM. The highly proliferating bone marrow cells were negative for ALP and OCN, suggesting that they could represent early osteoblast precursors. MLO-Y4 CM did not enhance the viability of mature osteoblasts nor protected them of apoptosis. This is the first study to describe soluble signals between osteocytes and osteoblasts and there most likely are several still unidentified or unknown factors in osteocyte CM. We conclude that osteocytes have an active stimulatory role in controlling bone formation.  相似文献   

3.
Mechanical stress produces flow of fluid in the osteocytic lacunar-canalicular network, which is likely the physiological signal for the adaptive response of bone. We compared the induction of prostaglandin G/H synthase-2 (PGHS-2) by pulsating fluid flow (PFF) and serum in osteocytes, osteoblasts, and periosteal fibroblasts, isolated from 18-day-old fetal chicken calvariae. A serum-deprived mixed population of primarily osteocytes and osteoblasts responded to serum with a two- to threefold induction of PGHS-2 mRNA. Serum stimulated PGHS-2-derived PGE(2) release from osteoblasts and osteocytes but not from periosteal fibroblasts as NS-398, a PGHS-2 blocker, inhibited PGE(2) release from osteocytes and osteoblasts with 65%, but not that from periosteal fibroblasts. On the other hand PFF (0.7 Pa, 5 Hz) stimulated (3 fold) PGHS-2 mRNA only in OCY. The related PGE(2) response could be completely inhibited by NS-398. We conclude that osteocytes have a higher intrinsic sensitivity for loading-derived fluid flow than osteoblasts or periosteal fibroblasts.  相似文献   

4.
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive processes used to achieve load‐bearing integrity remain unresolved. We have used the coculture of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick long bone and calvariae to examine these mechanisms. We exploited the fact that purified osteocytes are postmitotic to examine both their effect on proliferation of primary osteoblasts and the role of gap junctions in such communication. We found that chick long bone osteocytes significantly increased basal proliferation of primary osteoblasts derived from an identical source (tibiotarsi). Using a gap junction inhibitor, 18β‐glycyrrhetinic acid, we also demonstrated that this osteocyte‐related increase in osteoblast proliferation was not reliant on functional gap junctions. In contrast, osteocytes purified from calvarial bone failed to modify basal proliferation of primary osteoblast, but long bone osteocytes preserved their proproliferative action upon calvarial‐derived primary osteoblasts. We also showed that coincubated purified osteocytes exerted a marked inhibitory action on mechanical strain–related increases in proliferation of primary osteoblasts and that this action was abrogated in the presence of a gap junction inhibitor. These data reveal regulatory differences between purified osteocytes derived from functionally distinct bones and provide evidence for 2 mechanisms by which purified osteocytes communicate with primary osteoblasts to coordinate their activity.  相似文献   

5.
Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation in vitro of both primary osteoblasts and MC3T3 cells by approximately 75%. To further investigate at which level of osteoblast differentiation MMP inhibition was attenuating osteoblast function, we found that neither preosteoblast nor mature osteoblast activity was affected. In contrast, cell survival of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from apoptosis when transdifferentiating into osteocytes. By examination of osteoblasts and osteocytes embedded in calvarial bone in the MT1-MMP deficient mice, we found that MT1-MMP deficient mice had 10-fold higher levels of apoptotic osteocytes than wild-type controls. We have previously shown that MT1-MMP activates latent Transforming Growth Factorbeta (TGF-beta). These findings strongly suggest that MT1-MMP-activated TGF-beta maintains osteoblast survival during transdifferentiation into osteocytes, and maintains mature osteocyte viability. Thus, the interrelationship of MMPs and TGF-beta may play an important role in bone formation and maintenance.  相似文献   

6.
Bone turnover is a mechanically regulated process, coordinated in part by the network of mechanosensitive osteocytes residing within the tissue. The recruitment and bone forming activity of the mesenchymal derived osteoblast is determined by numerous factors including mechanical loading. It is therefore somewhat surprising that although mechanically regulated signaling between the coordinating osteocytes and mesenchymal stem cells (MSCs) should exist, to date it has not been directly demonstrated. In this study, conditioned media from mechanically stimulated osteocytes (MLO-Y4 cell line) was collected and added to MSCs (C3H10T1/2 cell line). The addition of mechanically stimulated osteocyte conditioned media resulted in a significant upregulation of the osteogenic genes OPN and COX-2 in MSCs compared to statically cultured conditioned media, demonstrating a novel paracrine signaling mechanism between the two cell types. The same mechanically conditioned media did not alter gene expression in osteoblasts (MC3T3 cell line), and mechanically stimulated osteoblast conditioned media did not alter gene expression in MSCs demonstrating that this signaling is unique to osteocytes and MSCs. Finally, the upregulation in osteogenic genes in MSCs was not observed if primary cilia formation was inhibited prior to mechanical stimulation of the osteocyte. In summary, the results of this study indicate that soluble factors secreted by osteocytes in response to mechanical stimulation can enhance osteogenic gene expression in MSCs demonstrating a novel, unique signaling mechanism and introduces a role for the primary cilium in flow mediated paracrine signaling in bone thereby highlighting the cilium as a potential target for therapeutics aimed at enhancing bone formation.  相似文献   

7.
Bone remodelling is a dynamic process that requires the coordinated interaction of osteocytes, osteoblasts, and osteoclasts, collaborating in basic multicellular units (BMUs). Communication between these cells can be by extracellular soluble molecules as well as directly propagating intercellular signalling molecules. Key to the understanding of bone remodelling is osteocyte mechanosensing and chemical signalling to the surrounding cells, since osteocytes are believed to be the mechanosensors of bone, responding to mechanical stresses. Nitric oxide (NO) is an important parameter to study osteocyte activation following mechanical loading. It is a small short-lived molecule, which makes its real-time, quantitative monitoring difficult. However, recently we demonstrated that DAR-4M AM chromophore can be used for real-time quantitative monitoring of intracellular NO production in individual cells following mechanical loading. Here we studied if a single mechanically stimulated osteocyte communicates with, and thus activates its surrounding cells via extracellular soluble factors. We monitored quantitatively intracellular NO production in the stimulated osteocyte and in its surrounding osteocytes, which were not interconnected. Mechanical stimulation by microneedle of a single-MLO-Y4 osteocyte-like cell upregulated the average intracellular NO production by 94% in the stimulated cell, and by 31-150% in the surrounding osteocytes. In conclusion, a single osteocyte can disseminate a mechanical stimulus to its surrounding osteocytes via extracellular soluble signalling factors. This reinforces the putative mechanosensory role of osteocytes, and demonstrates a possible mechanism by which a single mechanically stimulated osteocyte can communicate with other cells in a BMU, which might help to better understand the intricacies of intercellular interactions in BMUs and thus bone remodelling.  相似文献   

8.
 Cultures of isolated osteocytes may offer an appropriate system to study osteocyte function, since isolated osteocytes in culture behave very much like osteocytes in vivo. In this paper we studied the capacity of osteocytes to change their surrounding extracellular matrix by production of matrix proteins. With an immunocytochemical method we determined the presence of collagen type I, fibronectin, osteocalcin, osteopontin and osteonectin in cultures of isolated chicken osteocytes, osteoblasts and periosteal fibroblasts. In osteoblast and periosteal fibroblast cultures, large extracellular networks of collagen type I and fibronectin were formed, but in osteocyte populations, extracellular threads of collagen or fibronectin were only rarely found. The percentage of cells positive for osteocalcin, osteonectin and osteopontin in the Golgi apparatus, on the other hand, was highest in the osteocyte population. These results show that osteocytes have the ability to alter the composition of their surrounding extracellular matrix by producing matrix proteins. We suggest this property is of importance for the regulation of the calcification of the bone matrix immediately surrounding the cells. More importantly, as osteocytes depend for their role as mechanosensor cells on their interaction with matrix proteins, the adaptation of the surrounding matrix offers a way to regulate their response to mechanical loading. Accepted: 9 July 1996  相似文献   

9.
Reduced mechanical stress is a major cause of osteoporosis in the elderly, and the osteocyte network, which comprises a communication system through processes and canaliculi throughout bone, is thought to be a mechanosensor and mechanotransduction system; however, the functions of osteocytes are still controversial and remain to be clarified. Unexpectedly, we found that overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteoblast and osteoclast differentiation were unaffected by BCL2 transgene in vitro. However, the cortical bone mass increased due to enhanced osteoblast function and suppressed osteoclastogenesis at 4 months of age, when the frequency of TUNEL-positive lacunae reached 75%. In the unloaded condition, the trabecular bone mass decreased in both wild-type and BCL2 transgenic mice at 6 weeks of age, while it decreased due to impaired osteoblast function and enhanced osteoclastogenesis in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Rankl and Opg were highly expressed in osteocytes, but Rankl expression in osteoblasts but not in osteocytes was increased at unloading in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Sost was locally induced at unloading in wild-type mice but not in BCL2 transgenic mice, and the dissemination of Sost was severely interrupted in BCL2 transgenic mice, showing the severely impaired osteocyte network. These findings indicate that the osteocyte network is required for the upregulation of Rankl in osteoblasts and Sost in osteocytes in the unloaded condition. These findings suggest that the osteocyte network negatively regulate bone mass by inhibiting osteoblast function and activating osteoclastogenesis, and these functions are augmented in the unloaded condition at least partly through the upregulation of Rankl expression in osteoblasts and that of Sost in osteocytes, although it cannot be excluded that low BCL2 transgene expression in osteoblasts contributed to the enhanced osteoblast function.  相似文献   

10.
The in situ localization of osteoblast/osteocyte factor 45 (OF45) mRNA during bone formation has been examined in the rat mandible from embryonic day 14 (E14) up to postnatal 90-day-old Wistar rats. Gene expression was also examined during cell culture not only in primary rat osteoblast-like cells but also in two clonal rat osteoblastic cell lines with different stages of differentiation, ROB-C26 (C26) and ROB-C20 (C20) using Northern blot analysis. The C26 cell is a potential osteoblast precursor cell line, whereas the C20 cell is a more differentiated osteoblastic cell line. At E15 osteoblast precursor cells differentiated into a group of osteoblasts, some of which expressed the majority of non-collagenous proteins, whereas no expression of OF45 was observed in these cells. Intercellular matrices surrounded by osteoblasts were mineralized at E16. Subsequently, the number of osteoblasts differentiated from osteoblast precursor cells was increased in association with bone formation. At E17, the first expression of OF45 mRNA was observed only in a minority of mature osteoblasts attached to the bone matrix, but not in the rest of less mature osteoblasts. At E20, concomitant with the appearance of osteocytes, OF45 mRNA expression was observed not only in more differentiated osteoblasts that were encapsulated partly by bone matrix but also in osteocytes. Subsequently, osteocytes increased progressively in number and sustained OF45 mRNA expression in up to 90-day-old rats. Northern blot analysis of the cultured cells with or without dexamethasone treatment revealed that the gene expression of OF45 correlated well with the increased cell differentiation. These results indicate that OF45 mRNA is transiently expressed by mature osteoblasts and subsequently expressed by osteocytes throughout ossification in the skeleton and this protein represents an important marker of the osteocyte phenotype and most likely participates in regulating osteocyte function.  相似文献   

11.
Cell proliferation on the actively growing periosteal surface of the femur of rabbits aged 2 weeks has been investigated using autoradiographic techniques. Injections of tritiated glycine and tritiated thymidine were given simultaneously and the animals sacrificed at intervals from 1 hour to 5 days after injection. The glycine labeled the position of the bone surface at the time of injection and the thymidine labeled the cells which were synthesising DNA. The rate of increase in the cell population was determined by counting the number of cells beyond the glycine label at different times after injection. The cell kinetics of the fibroblast-pre-osteoblast-osteoblast-osteocyte system has been studied. The fibroblasts are relatively unimportant from the point of view of increase in the cell population. The main site of cell proliferation is the layer of pre-osteoblasts on the periosteal surface. The rate of movement of cells from the pre-osteoblast to the osteoblast and osteocyte compartments has been measured. The incorporation of osteoblasts into the bone is not a random process, but it appears that the osteoblast must spend a certain time on the periosteal surface before becoming either an osteocyte or a relatively inactive osteoblast lining an haversian canal. It was estimated that, on an average, an osteoblast produces 2 or 3 times its own volume of matrix during its most active period on the periosteal surface.  相似文献   

12.
Bcl2 subfamily proteins, including Bcl2 and Bcl-X(L), inhibit apoptosis. As osteoblast apoptosis is in part responsible for osteoporosis in sex steroid deficiency, glucocorticoid excess, and aging, bone loss might be inhibited by the upregulation of Bcl2; however, the effects of Bcl2 overexpression on osteoblast differentiation and bone development and maintenance have not been fully investigated. To investigate these issues, we established two lines of osteoblast-specific BCL2 transgenic mice. In BCL2 transgenic mice, bone volume was increased at 6 weeks of age but not at 10 weeks of age compared with wild-type mice. The numbers of osteoblasts and osteocytes increased, but osteoid thickness and the bone formation rate were reduced in BCL2 transgenic mice with high expression at 10 weeks of age. The number of BrdU-positive cells was increased but that of TUNEL-positive cells was unaltered at 2 and 6 weeks of age. Osteoblast differentiation was inhibited, as shown by reduced Col1a1 and osteocalcin expression. Osteoblast differentiation of calvarial cells from BCL2 transgenic mice also fell in vitro. Overexpression of BCL2 in primary osteoblasts had no effect on osteoclastogenesis in co-culture with bone marrow cells. Unexpectedly, overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteocytes, which had a reduced number of processes, gradually died with apoptotic structural alterations and the expression of apoptosis-related molecules, and dead osteocytes accumulated in cortical bone. These findings indicate that overexpression of BCL2 in osteoblasts inhibits osteoblast differentiation, reduces osteocyte processes, and causes osteocyte apoptosis.  相似文献   

13.
14.
Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction–coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body–containing lacunae with each other and with the outside world. During differentiation from osteoblast to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are (1) osteocytes are actively involved in bone turnover; (2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and (3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Within mineralized bone, osteocytes form dendritic processes that travel through canaliculi to make contact with other osteocytes and cells on the bone surface. This three-dimensional syncytium is thought to be necessary to maintain viability, cell-to-cell communication, and mechanosensation. E11/gp38 is the earliest osteocyte-selective protein to be expressed as the osteoblast differentiates into an osteoid cell or osteocyte, first appearing on the forming dendritic processes of these cells. Bone extracts contain large amounts of E11, but immunostaining only shows its presence in early osteocytes compared to more deeply embedded cells, suggesting epitope masking by mineral. Freshly isolated primary osteoblasts are negative for E11 expression but begin to express this protein in culture, and expression increases with time, suggesting differentiation into the osteocyte phenotype. Osteoblast-like cell lines 2T3 and Oct-1 also show increased expression of E11 with differentiation and mineralization. E11 is highly expressed in MLO-Y4 osteocyte-like cells compared to osteoblast cell lines and primary osteoblasts. Differentiated, mineralized 2T3 cells and MLO-Y4 cells subjected to fluid flow shear stress show an increase in mRNA for E11. MLO-Y4 cells show an increase in dendricity and elongation of dendrites in response to shear stress that is blocked by small interfering RNA specific to E11. In vivo, E11 expression is also increased by a mechanical load, not only in osteocytes near the bone surface but also in osteocytes more deeply embedded in bone. Maximal expression is observed not in regions of maximal strain but in a region of potential bone remodeling, suggesting that dendrite elongation may be occurring during this process. These data suggest that osteocytes may be able to extend their cellular processes after embedment in mineralized matrix and have implications for osteocytic modification of their microenvironment.  相似文献   

16.
Fluid flowing through the bone porosity might be a primary stimulus for functional adaptation of bone. Osteoblasts, and osteocytes in particular, respond to fluid flow in vitro with enhanced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) release; both of these signaling molecules mediate mechanically-induced bone formation. Because the cell cytoskeleton is involved in signal transduction, we hypothesized that the pulsatile fluid flow-induced release of NO and PGE(2) in both osteoblastic and osteocytic cells involves the actin and microtubule cytoskeleton. In testing this hypothesis we found that fluid flow-induced NO response in osteoblasts was accompanied by parallel alignment of stress fibers, whereas PGE(2) response was related to fluid flow stimulation of focal adhesions formed after cytoskeletal disruption. Fluid flow-induced PGE(2) response in osteocytes was inhibited by cytoskeletal disruption, whereas in osteoblasts it was enhanced. These opposite PGE(2) responses are likely related to differences in cytoskeletal composition (osteocyte structure was more dependent on actin), but may occur via cytoskeletal modulation of shear/stretch-sensitive ion channels that are known to be dominant in osteocyte (and not osteoblast) response to mechanical loading.  相似文献   

17.
Expression of serotonin receptors in bone   总被引:6,自引:0,他引:6  
The 5-hydroxytryptamine (5-HT) receptors 5-HT(2A), 5-HT(2B), and 5-HT(2C) belong to a subfamily of serotonin receptors. Amino acid and mRNA sequences of these receptors have been published for several species including man. The 5-HT(2) receptors have been reported to act on nervous, muscle, and endothelial tissues. Here we report the presence of 5-HT(2B) receptor in fetal chicken bone cells. 5-HT(2B) receptor mRNA expression was demonstrated in osteocytes, osteoblasts, and periosteal fibroblasts, a population containing osteoblast precursor cells. Pharmacological studies using several agonists and antagonists showed that occupancy of the 5-HT(2B) receptor stimulates the proliferation of periosteal fibroblasts. Activity of the 5-HT(2A) receptor could however not be excluded. mRNA for both receptors was shown to be equally present in adult mouse osteoblasts. Osteocytes, which showed the highest expression of 5-HT(2B) receptor mRNA in chicken, and to a lesser extent osteoblasts, are considered to be mechanosensor cells involved in the adaptation of bone to its mechanical usage. Nitric oxide is one of the signaling molecules that is released upon mechanical stimulation of osteocytes and osteoblasts. The serotonin analog alpha-methyl-5-HT, which preferentially binds to 5-HT(2) receptors, decreased nitric oxide release by mechanically stimulated mouse osteoblasts. These results demonstrate that serotonin is involved in bone metabolism and its mechanoregulation.  相似文献   

18.
19.
Shear stress inhibits while disuse promotes osteocyte apoptosis   总被引:5,自引:0,他引:5  
Cell apoptosis operates as an organizing mechanism in biology in addition to removing effete cells. We have recently proposed that during bone remodeling, osteocyte apoptosis steers osteonal alignment in relation to mechanical loading of the whole bone [J. Biomech. 36 (2003) 1453]. Here we present evidence that osteocyte apoptosis in cell culture is modulated by shear stress. Under static culture conditions, serum starved osteocytes exposed phosphatidylserine (PS) on their cell membrane 6x more often than periosteal fibroblasts and 3x more often than osteoblasts. Treatment with shear stress reduced the number of osteocytes that exposed PS by 90%, but did not affect the other cell types. Fluid shear stress of increasing magnitude, dose-dependently stimulated Bcl-2 mRNA expression in human bone cells, while shear stress did not change Bax expression. These data suggest that disuse promotes osteocyte apoptosis, while mechanical stimulation by fluid shear stress promotes osteocyte survival, by modulating the Bcl-2/Bax expression ratio.  相似文献   

20.
Upon termination of bone matrix synthesis, osteoblasts either undergo apoptosis or differentiate into osteocytes or bone lining cells. In this study, we investigated the role of matrix metalloproteinases (MMPs) and growth factors in the differentiation of osteoblasts into osteocytes and in osteoblast apoptosis. The mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts were either grown on two-dimensional (2-D) collagen-coated surfaces, where they morphologically resemble flattened, cuboidal bone lining cells, or embedded in three-dimensional (3-D) collagen gels, where they resemble dendritic osteocytes constituting a network of cells. When MC3T3-E1 osteoblasts were grown in a 3-D matrix in the presence of an MMP inhibitor (GM6001), the cell number was dose-dependently reduced by approximately 50%, whereas no effect was observed on a 2-D substratum. In contrast, the murine mature osteocyte cell line, MLO-Y4, was unaffected by GM6001 under all culture conditions. According to TUNEL assay, the osteoblast apoptosis was increased 2.5-fold by 10 microm GM6001. To investigate the mechanism by which MMPs mediate the survival of osteoblasts, we examined the effect of GM6001 on MC3T3-E1 osteoblasts in the presence of extracellular matrix components and growth factors, including tenascin, fibronectin, laminin, collagenase-cleaved collagen, gelatin, parathyroid hormone, basic fibroblast growth factor, vascular epidermal growth factor, insulin-like growth factor, interleukin-1, and latent and active transforming growth factor-beta (TGF-beta). Only active TGF-beta, but not latent TGF-beta or other agents tested, restored cell number and apoptosis to control levels. Furthermore, we found that the membrane type MMP, MT1-MMP, which is produced by osteoblasts, could activate latent TGF-beta and that antibodies neutralizing endogenous TGF-beta led to a similar decrease in cell number as GM6001. Whereas inhibitors of other protease families did not induce osteoblast apoptosis, an inhibitor of the p44/42 mitogen-activated protein kinase showed the same but non-synergetic effect as GM6001. These findings suggest that MMP-activated TGF-beta maintains osteoblast survival during trans-differentiation into osteocytes by a p44/42-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号