首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Normal growth of the fetal lung is dependent upon fetal breathing movements. We have previously demonsrated that mechanical strain, simulating fetal breathing movements, stimulated DNA synthesis and cell division by reaggregated alveolar-like structures of fetal rat lung cells. Herein, we report that both intracellular and extracellular calcium modulate strain-induced proliferative activity. Strain-induced cell proliferation was inhibited by BAPTA/AM, an intracellular calcium chelator. The intracellular calcium modulators, cyclopiazonic acid and 2,5-di-(tert-butyl)-1, 4-benzohydroquinone, increased DNA synthesis of unstrained cultures and partially reduced strain-induced cell growth activity. A similar effect was noted with the calcium ionophore A23187. Extracellular Ca2+ increased DNA synthesis in unstrained cultures in a concentration-dependent fashion. The stimulatory effect of strain on DNA synthesis was also dependent on the calcium concentration in the medium. Furthermore, strain-enhanced DNA synthesis was inhibited by the presence of a divalent ion chelator, EGTA, in the medium. Mechanical strain increased 45Ca2+ influx within 1 min after the onset strain. This rapid entry of calcium was not affected by calcium channel blockers, such as verapamil or Ni2+. Calcium channel blockers verapamil, nifedipine, Ni2+, Co2+, or La3+ also did not inhibit strain-induced cell growth activity. In contrast, gadolinium, a stretch-activated channel blocker, inhibited strain-induced 45Ca2+ influx and suppressed strain-enhanced DNA synthesis. We conclude that the entry of calcium into cells through stretch-activated ion channels plays a critical role in strain-induced fetal lung cell proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Development of the pulmonary air sacs is crucial for extrauterine survival. Late fetal lung development is characterized by a thinning of the mesenchyme, which brings pneumocytes and endothelial cells into apposition. We hypothesized that mechanical stretch, simulating fetal breathing movements, plays an important role in this remodeling process. Using a Flexercell Strain Unit, we analyzed the effects of intermittent stretch on cell proliferation and apoptosis activation in fibroblasts isolated from fetal rat lungs during late development. On day 19, intermittent stretch increased cells in G(0)/G(1) by 22% (P = 0.001) and decreased in S phase by 50% (P = 0.003) compared with unstretched controls. Cell proliferation analyzed by 5-bromo-2'-deoxyuridine incorporation showed a similar magnitude of cell cycle arrest (P = 0.04). At this same gestational age, stretch induced apoptosis by two- to threefold over controls, assayed by DNA flow cytometry, terminal deoxynucleotidyl transferase-mediated dUTP-FITC nick-end labeling, and caspase-3 activation. These results indicate that mechanical stretch of fibroblasts isolated during the canalicular stage inhibits cell cycle progression and activates apoptosis. These findings are cotemporal with the mesenchymal thinning that normally occurs in situ.  相似文献   

4.
Epithelial cell differentiation in organotypic cultures of fetal rat lung   总被引:3,自引:0,他引:3  
The purpose of this investigation was to examine the suitability of an organotypic lung-cell culture model for the study of factors influencing fetal lung-cell differentiation. It has been reported that the use of carbon-stripped (hormone-depleted) bovine fetal calf serum in monolayer cell cultures of fetal rat lung prevents continued epithelial cell differentiation in vitro. In this study, organotypic cultures of fetal rat lung cells taken at day 20 of gestation (late canalicular stage) were prepared with a carbon-stripped medium. These organotypic cultures were examined by light, scanning, and transmission electron microscopy for comparison with controls prepared with unstripped bovine fetal calf serum. Highly organized three-dimensional tubular epithelial structures resembling saccules of immature lung were observed within the gelatin sponge matrix. Morphometric analysis of day 20 carbon-stripped samples revealed that 74.6% of the epithelial cells in the tubular structures contained osmiophilic lamellar bodies characteristic of type II pneumonocytes. Control specimens had 71.2% cells with lamellar bodies and did not differ significantly from the experimental group. These data are similar to those obtained with organ cultures of fetal rat lung but are in contrast to findings with monolayer culture systems. The observations of this study suggest that 1) the hormones extracted from bovine fetal calf serum by carbon-stripping are not solely responsible for the continued fetal lung cell differentiation observed in vitro, and 2) that spatial relationships between lung cells in vitro may be a significant factor in the control of differentiation.  相似文献   

5.
The cellular mechanism by which glucocorticoids stimulate phosphatidylcholine biosynthesis has been studied in the fetal rat lung in vivo and in cultured fetal rat lung cells of varying levels of complexity. Administration of dexamethasone to pregnant rats at 18 days gestation resulted in a significant increase in saturated phosphatidylcholine content in fetal lung 24 h after injection. Dexamethasone administration increased the activity of fetal lung choline-phosphate cytidylyltransferase by 34%. It had no effect on the activities of fetal lung choline kinase and choline phosphotransferase. Exposure of fetal lung type II cells in organotypic cultures (which contain both type II cells and fibroblasts) to cortisol resulted in a 1.6-fold increase in the incorporation of [Me-3H]choline into saturated phosphatidylcholine. The activities of the enzymes in the choline pathway for the de novo biosynthesis of phosphatidylcholine were not significantly altered except for a 105% increase in choline-phosphate cytidylyltransferase activity. Treatment of monolayer cultures of fetal type II cells with cortisol-conditioned medium from fetal lung fibroblasts resulted in a 1.5-fold increase in saturated phosphatidylcholine production. This effect correlated with a doubling of choline-phosphate cytidylyltransferase activity. Additional evidence that this stimulatory action is mediated by fibroblast-pneumonocyte factor, produced by fetal lung fibroblasts in response to cortisol, was obtained. The factor was partially purified from cortisol-conditioned medium of fetal lung fibroblasts by gel filtration and affinity chromatography. Based on biological activity, a 3000-fold purification was obtained. Stimulation of saturated phosphatidylcholine synthesis in type II cells by fibroblast-pneumonocyte factor was maximal within 60 min of incubation. Pulse-chase experiments indicated that the stimulatory effect was correlated with an increased conversion of choline phosphate into CDP choline. Moreover, the enhanced phosphatidylcholine formation by fetal type II cells in response to fibroblast-pneumonocyte factor was accompanied by decreased levels of cellular choline phosphate. These findings further support the concept that glucocorticoid action on surfactant-associated phosphatidylcholine synthesis occurs ultimately at the level of the alveolar type II cell and involves fibroblast-pneumonocyte factor which stimulates the activity of choline-phosphate cytidylyltransferase.  相似文献   

6.
Summary The role of epithelial-mesenchymal interactions in the stimulation of lung development by estrogen is now investigated using organ cultures of lung from male and female fetal rats taken from Days 17 to 21 of gestation. Estradiol at 1 μg/ml was found to reduce cell proliferation in explants taken during a rapid growth phase (Day 18) and to stimulate surfactant synthesis in both males and females only in Day 20 explants when cell division is much slower. At this time more epithelial cells from estrogen-treated explants contained lamellar bodies, which were also secreted to fill the air sacs. These cultures also showed a significant increase in the frequency of cell-to-cell contacts between epithelial cells and fibroblasts. Uptake of tritiated estradiol by explants increased from Day 18 onward, and by autoradiography, labeling was located predominantly over fibroblasts. Using pure cultures of fetal and adult cells, uptake of labeled estradiol was significantly higher in fibroblasts than in corresponding epithelial cells, and estradiol did not directly enhance palmitate incorporation into epithelial cells. The results suggest that the earlier maturation and increased surfactant synthesis in female fetal lung is related at least in part to enhanced binding of estrogen by the fibroblast with subsequent transfer of a maturation factor to the fetal epithelium. This research project was supported by grants from the Medical Research Council of Canada and the Council for Tobacco Research, U.S.A., Inc.  相似文献   

7.
Abstract. The classical models of in vitro cell culture comprise fibroblasts and epithelial cells. Osteogenic cells represent another interesting cell model; however, it is not known whether during osteogenesis cell density regulates cell growth as seen in cultures of fibroblasts and epithelial cells. We selected MC3T3-E1 cells for study because they are an osteogenic cell line that, when subcultured, grow to confluence and form multilayers of cells in conventional cultures by continued proliferation, as do fibroblasts. Once maximum cell density is obtained, proliferation is down regulated resulting in a mixed population of quiescent and dividing cells. We used this model to determine whether downregulation of proliferation as expressed by cell number and DNA synthesis is cell density-dependent. MC3T3-E1 cells were cultured over a period of 34 days to determine their kinetics, viability, ability to synthesize DNA, distribution within phases of the cell cycle and cell number-response relationships. Our results show that (1) viability ranged between 92% and 96% and the cell number 2.5 x 105 per cm2 once cultures reached steady state, (2) most cells entered the G0/G1 phase of the cell cycle on day 7, (3) there was no correlation between the proportion of cells in S phase and downregulation of DNA synthesis, (4) a direct relationship exists between cell density and downregulation of DNA synthesis on day 8, (5) the minimum time for cells to be cultured before downregulation of DNA synthesis begins is independent of cell number, and (6) downregulation of DNA synthesis is reversible. These results suggest that density-dependent downregulation of DNA synthesis may be a mechanism of growth control for osteogenic cells in vitro that operates more like density-dependent growth control in cultures of fibroblasts rather than epithelial cells.  相似文献   

8.
Human fetal lung (14-18 weeks gestation) was maintained in either organ or organotypic culture. By 4 days in organ culture or 14 days in organotypic culture, epithelial cells within both culture systems exhibited well-developed apical microvilli and possessed numerous intracellular lamellar bodies characteristic of surfactant phospholipid stores. However, analysis of the pattern of synthesis of individual molecular species of phosphatidylcholine by [14C]choline incorporation and reversed-phase h.p.l.c. showed that this apparent maturation was not paralleled by an increased synthesis of the dipalmitoyl species in either culture system. By contrast, the fractional synthesis of dipalmitoyl phosphatidylcholine, expressed as a percentage of total [14C]choline incorporation, decreased with time in both organ and organotypic culture. Moreover, these fractions were not significantly different from those measured in parallel monolayer cultures of mixed human fetal lung cells that displayed mainly fibroblast morphology. These results suggest that the synthesis pattern of phosphatidylcholine species by lung cells in culture is determined principally by their incubation conditions and not by their state of apparent maturation.  相似文献   

9.
Glucocorticoids accelerate fetal lung maturation by acting on the fetal lung fibroblast to induce the synthesis of fibroblast-pneumonocyte factor which in turn stimulates pulmonary surfactant synthesis by the alveolar type II cell. We have studied the site of glucocorticoid regulation of fibroblast-pneumonocyte factor synthesis in primary cultures of fetal rat lung fibroblasts. Conditioned media from fetal rat lung fibroblasts exposed to cortisol stimulate [Me-3H]choline incorporation into saturated phosphatidylcholine by primary cultures of fetal rat lung alveolar type II cells. This effect is blocked by the presence of actinomycin D during the first, but not the second, 24 h of incubation of the fibroblasts with cortisol. Cycloheximide blocks this effect if present during either the first or second 24 h of incubation. We fractionated mRNA from fetal rat lung fibroblasts incubated in the presence or absence of dexamethasone and observed that cell-free translation products from a fraction of approximately 500 bases possess biological activity in the bioassay. Such activity is only present in cell-free translation products of mRNA isolated from fibroblasts treated with dexamethasone. These results suggest that glucocorticoids act at a pretranslational level to induce production of fibroblast-pneumonocyte factor and that the primary translation products are biologically active.  相似文献   

10.
Glucocorticoids secreted by the fetal adrenal, or administered for therapeutic reasons, stimulate fetal lung maturation in the human and other species. Prostacyclin, produced within the lung may be another agent with maturational effects. In this investigation we have demonstrated that glucocorticoids interact with lung cells and increase their response to a prostacyclin analogue (Iloprost, PGIp). This agent stimulates adenylate cyclase activity in fetal lung fibroblasts, fetal lung epithelial cells and in neonatal vascular smooth muscle cells. The cAMP response to PGIp in fibroblasts and epithelial cells occurred in the range 3nM-1 microM. When fibroblasts were pretreated with cortisol before PGIp, cAMP was increased 2-3 fold (p less than 0.01). There was a similar increase in cAMP after cortisol pretreatment in response to PGIp by fetal lung epithelial cells, but not with smooth muscle cells. The action of cortisol was blocked by an inhibitor of RNA synthesis (Actinomycin D) but not by an inhibitor of DNA synthesis (5-fluorodeoxy-uridine). Additional experiments with cholera and pertussis toxins, and with forskolin suggest that cortisol principally increases the quantity or activity of the adenylate cyclase sub-unit in fetal lung fibroblasts and, in doing so, increases the cAMP response to PGIp.  相似文献   

11.
Organotypic cultures, established from enzymatically dispersed day 19 fetal rat lung, are comprised primarily of cells which are morphologically similar to type II alveolar pneumonocytes, the cells involved in surfactant synthesis. To further characterize these cultures, the nonspecific esterase pool was examined to determine if these cultures contained certain nonspecific esterases previously shown to be enzyme markers for the surfactant system. The results of biochemical, electrophoretic and cytochemical studies indicate that these organotypic cultures contain the same nonspecific esterases already demonstrated in surface active fractions derived from rat and mouse lung homogenates and pulmonary lavage fluid. As in whole lung, the major site of esterase activity in the organotypic cultures is the type II cell lamellar body, the putative site of surfactant synthesis and storage. These findings support the concept that the organotypic cultures derived from fetal rat lung are comprised predominantly of type II cells which retain surfactant associated functions in vitro.  相似文献   

12.
Functional maturation of pulmonary alveolar epithelial cells is crucial for extrauterine survival. Mechanical distension and mesenchymal-epithelial interactions play important roles in this process. We hypothesized that mechanical stretch simulating fetal breathing movements is an important regulator of pulmonary epithelial cell differentiation. Using a Flexercell Strain Unit, we analyzed effects of stretch on primary cultures of type II cells and cocultures of epithelial and mesenchymal cells isolated from fetal rat lungs during late development. Cyclic stretch of isolated type II cells increased surfactant protein (SP) C mRNA expression by 150 +/- 30% over controls (P < 0.02) on gestational day 18 and by 130 +/- 30% on day 19 (P < 0.03). Stretch of cocultures with fibroblasts increased SP-C expression on days 18 and 19 by 170 +/- 40 and 270 +/- 40%, respectively, compared with unstretched cocultures. On day 19, stretch of isolated type II cells increased SP-B mRNA expression by 50% (P < 0.003). Unlike SP-C, addition of fibroblasts did not produce significant additional effects on SP-B mRNA levels. Under these conditions, we observed only modest increases in cellular immunoreactive SP-B, but secreted saturated phosphatidylcholine rose by 40% (P < 0.002). These results indicate that cyclic stretch promotes developmentally timed differentiation of fetal type II cells, as a direct effect on epithelial cell function and via mesenchymal-epithelial interactions. Expression of the SP-C gene appears to be highly responsive to mechanical stimulation.  相似文献   

13.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and F alpha by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and F alpha and smaller quantities of 6-keto-prostaglandin F1 alpha and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1 alpha) along with smaller quantities of prostaglandin E2 and F2 alpha. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E, had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures.  相似文献   

14.
The concerted action of TGF-β and PDGF on a diploid human embryonic lung fibroblast cell strain (Flow 2002) grown in an homologous environment is investigated here. In sparse cultures, TGF-β stimulates DNA synthesis over a broad concentration range (0.1-10 ng/ml). Furthermore, it acts in synergism with PDGF, a phenomenon which persists also during in vitro aging of the cells. Preincubation of TGF-β with the fibroblasts up to 12 hours reduces the subsequent PDGF binding to the cells, while prolonged preincubation restores PDGF binding to control levels. Finally, in cultures of higher cell densities, TGF-β ceases to stimulate DNA synthesis, whereas PDGF continues even at cell confluency, retains its stimulatory activity suggesting different roles for the two growth factors during the wound healing process.  相似文献   

15.
The effect of mesenchyme on both proliferation and differentiation of mammary epithelial cells was investigated in a primary cell culture system. Mammary cells cultured on collagen gel for 4 days produced casein in response to the synergistic action of insulin, cortisol, and prolactin. When mammary epithelial cells were co-cultured with fibroblasts derived from three different kinds of fetal mesenchymal tissues, casein production was suppressed. The addition of conditioned media obtained from cultures of these mesenchymal cells stimulated DNA synthesis and reduced casein synthesis in a dose-dependent fashion in the cultured mammary cells. Although such biological actions are similar to those of epidermal growth factor (EGF), the capability to compete with EGF for EGF receptor was not found in this conditioned medium. Sephadex G-200 column chromatography revealed that molecular weight of the peak which has these biological activities was around 100,000. These results indicate that fetal mesenchymal cells secrete a substance(s) which has a stimulatory effect on proliferation and an inhibitory effect on differentiation of mammary epithelial cells.  相似文献   

16.
Transforming growth factor-beta (TGF-beta) is a potent regulator of cell proliferation; interestingly its action is clearly cell type-dependent. In particular, it inhibits epithelial and endothelial cells' proliferation, while its action on many mesenchymal cells has been reported to be stimulatory. In this direction, we have recently shown that TGF-beta regulates the proliferation of normal human skin fibroblasts according to their developmental origin: i.e. it inhibits fetal fibroblasts, while it stimulates the proliferation of adult ones. Here, we present evidence on the mechanisms underlying this differential action. Concerning fetal fibroblasts, we have found that TGF-beta activates Protein Kinase A (PKA) and induces the expression of the cyclin-dependent kinase inhibitors (CKIs) p21(CIP1/WAF1) and p15(INK4B). Moreover, the specific PKA inhibitor H-89 blocks the induction of both CKIs and annuls the TGF-beta-mediated inhibitory effect, indicating the central role of PKA in this process. In contrast, in adult cells no PKA activation is observed. Moreover, TGF-beta stimulates cell proliferation by activating the MEK-ERK pathway, as the MEK inhibitor PD98059 blocks this effect. A specific neutralizing antibody against Fibroblast Growth Factor-2 (FGF-2) inhibits both ERK activation and the mitogenic activity of TGF-beta, indicating that the latter establishes an autocrine loop, via FGF-2, leading to cell proliferation. This loop requires FGF receptor-1 (FGFR-1), as its down-regulation by siRNA approach prevents TGF-beta from stimulating ERK-1/2 activation and DNA synthesis. In conclusion, the differential proliferative response of fetal and adult normal human skin fibroblasts to TGF-beta is regulated by distinct signaling pathways and furthermore it may provide information on the bimodal effect of this factor on cell proliferation, in general.  相似文献   

17.
The goal of this study was to examine whether IL-6 could directly protect lung resident cells, especially alveolar epithelial cells, from reactive oxygen species (ROS)-induced cell death. ROS induced IL-6 gene expression in organotypic lung slices of wild-type (WT) mice. ROS also induced IL-6 gene expression in mouse primary lung fibroblasts, dose dependently. The organotypic lung slices of WT were more resistant to ROS-induced DNA fragmentation than those of IL-6-deficient (IL-6-/-) mice. WT resistance against ROS was abrogated by treatment with anti-IL-6 antibody. TdT-mediated dUTP nick end labeling stain and electron microscopy revealed that DNA fragmented cells in the IL-6-/- slice included alveolar epithelial cells and endothelial cells. In vitro studies demonstrated that IL-6 reduced ROS-induced A549 alveolar epithelial cell death. Together, these data suggest that IL-6 played an antioxidant role in the lung by protecting lung resident cells, especially alveolar epithelial cells, from ROS-induced cell death.  相似文献   

18.
Cells within the normal human colonic epithelium undergo a dynamic cycle of growth, differentiation, and death. The organotypic culture system of human fetal colonic epithelial cells seeded on top of collagen gels with embedded colonic fibroblasts allowed prolonged culture of the colonic epithelial cells (Kalabis J, Patterson MJ, Enders GM, Marian B, Iozzo RV, Rogler G, Gimotty PA, Herlyn M. FASEB J 17: 1115-1117, 2003). Herein, we have evaluated the role of endothelin-3 (ET3) and both cognate endothelin receptors (ETRA, ETRB) for human colonic epithelial cell growth and survival. ET3 was produced continuously by the fibroblasts as a result of adenovirus-mediated gene transfer. The presence and function of the endothelin receptors (ETRs) in epithelial cells was evaluated by [(3)H]thymidine incorporation using primary epithelial cells in monoculture and by immunohistochemistry on human fetal and adult paraffin-embedded tissues. In organotypic culture, ET3 increased the number of goblet cells but not of enteroendocrine cells. The increase in goblet cells was caused by prolonged cell survival and differentiation. The inhibition of both ETRA and ETRB significantly decreased the number of goblet cells and proliferation in epithelial cells, whereas the number of enteroendocrine cells remained unchanged. ET3 induced activation of IkappaB and MAPK in the epithelial cells, suggesting that these signaling pathways mediate its proproliferation and prosurvival activities. Our results demonstrate that ET3 is involved in regulating human colonic epithelial cell proliferation and survival, particularly for goblet cells, and may be an important component of colonic homeostasis.  相似文献   

19.
The F strain of herpes simplex virus type 1 (HSV-1) was tested for its ability to produce lytic or nonproductive infection in squamous epithelial cells cultured in a three-dimensional organotypic tissue culture. For the tissue culture, we used HaCat cells (immortalized skin keratinocytes) and normal fibroblasts derived from the skin. The cultures were infected with HSV-1 (5 PFU) either when the epithelial cells had grown as a monolayer with a confluence of 80% on the collagen fibroblast gel or 30 min after lifting of the epithelial cells into the air-liquid interface. The cultures were collected 1 week after inoculation. Typical cytopathic effects of HSV infection (ballooning and reticular degeneration with multinucleate giant cells) were seen only in those cultures in which the epithelial cells were infected before lifting. The presence of HSV was confirmed by DNA and RNA in situ hybridization and PCR. No morphological changes were found in cultures infected after lifting into the air-liquid interface. No infectious virus was recovered either from cells or culture supernatant. However, these cultures were positive for HSV DNA on PCR and showed expression of the LAT gene by in situ hybridization and Northern blot (RNA) hybridization. The present results indicate that both nonproductive and lytic HSV infection can be produced in vitro and the outcome of the infection depends on the time of viral inoculation in relation to epithelial maturation.  相似文献   

20.
In studies of the ontogeny of fibroblast-epithelial interactions during late fetal lung rat lung development, we have identified two subpopulations of fibroblasts which differed in their ability to promote epithelial cell proliferation or differentiation. As glycosaminoglycans (GAGs) have been implicated in the regulation of these processes we have tested whether the two fibroblast populations synthesize different GAGs and whether the GAG pattern changes with development. Fibroblasts incorporate more [3H]glucosamine and Na2 35SO4 into GAGs than epithelial cells. Both cell types deposited a significant amount of newly synthesized GAGs in the cell-matrix layer. GAGs were lost faster from the cell-matrix layer of fibroblasts (t1/2 = 12 h) than from that of epithelial cells (t1/2 = 48 h). Total GAG synthesis by fibroblasts did not change with advancing gestation, but synthesis of sulfated GAGs by epithelial cells declined with advancing gestation. Independent of gestational age epithelial cells synthesized predominantly heparan sulfate. Depending on their proximity to the epithelium, fibroblasts differed in their production of GAGs. Fibroblasts in close proximity to the epithelium mainly produced and secreted hyaluronan. More distant fibroblasts, from the pseudoglandular stage of lung development synthesized primarily heparan sulfate and chondroitin sulfate. This same population of fibroblasts from the canalicular stage of lung development, produced more hyaluronan. As the shift to hyaluronan occurs with the thinning of the alveolar septal wall, this finding suggests that developmentally regulated GAG production by fibroblasts may facilitate epithelial-fibroblast interaction, thus influencing fetal lung growth and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号