首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A new method was established for somatic embryogenesis and plant regeneration from callus cultures of Dioscorea zingiberensis C.H. Wright. Primary callus was induced by culturing stems, leaves and petioles on Murashige and Skoog (MS) medium supplemented with 0.5–2.0 mg l–1 N6-benzyladenine (BA) and 0–2.0 mg l–1 -naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) for 1 month. The highest frequency (87%) of callus formation was achieved from stem explants treated with 0.5 mg l–1 BA and 2.0 mg l–1 2,4-D. Somatic embryos were obtained by subculturing embryogenic calli derived from stem explants on MS medium supplemented with 2.0–4.0 mg l–1 BA and 0–0.4 mg l–1 NAA or 2,4-D for 3 weeks. The optimum combination of 4.0 mg l–1 BA and 0.2 mg l–1 NAA promoted embryo formation on one-third of the calli. After a further month of subculture on the same medium, mature embryos were transferred to MS medium supplemented with 0–4.0 mg l–1 BA, NAA or indole-3-butyric acid (IBA) for further development of plantlets and tuber formation. Plant growth regulators had a negative effect on the development of mature embryos.  相似文献   

2.
Immature zygotic embryos at different developmental stages were used for callus induction and regeneration studies. Immature embryos excised from fruits 77, 91, 100, 114, 128, 140 and 193 days after pollination and mature embryos were cultured on modified Y3 medium containing 500 mgl–1 cysteine, 0.5% (w/v) PVP-40, 500 M 2,4-d and 0.3% (w/v) charcoal. Compact embryogenic tissue began differentiating directly from embryo explants after 2 weeks of culture. The percentage of embryos forming compact embryogenic tissue ranged from 28.6% for 91-day-old embryos to 0% for 140-day-old and older embryos. Friable embryogenic tissue was observed in callus cultures derived from 100-day-old embryos. Although both compact and friable embryogenic tissues were successfully isolated, normal embryo and plantlet development was observed only from friable embryogenic tissue.Abbreviations ABA abscisic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - PVP polyvinylpyrollidone  相似文献   

3.
Anthers of Morus indica L., with microspores at the uninucleate stage were cultured; and the influence of temperature and kinetin pretreatment on induction of androgenic calluses was examined. The effects of various pretreatments revealed that 24 h cold pretreatment increased the percentage of cultures inducing callus. First microspore division was observed after 16 to 20 days of culture. Th anthers split and developed embryogenic calluses on MB medium supplemented with NAA (0.5 mg l–1 and BA (1.0 mg l–1)) using 8% sucrose. Rhizogenesis was induced on medium supplemented with NAA and BA (each 0.5 mg l–1) with reduced myo-inositol (75 mg l–1). Cytological study of induced roots confirmed the haploid nature of calluses. Different type of embryos were initiated upon transfer of calluses to medium supplemented with NAA, BA (each 0.5 mg l–1), 2,4-d (1.0 mg l–1) and PVP (600 mg l–1). These embryoids further developed roots on removal of 2,4-d from the medium and developed precociously without developing cotyledons and formed elongated shoots.Abbreviations BA 6 benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - FAA formalin: Acetic acid: Alcohol - GA3 gibberellic acid - IBA indole-3-butyric acid - MB modifed Bourgin (Qian et al., 1982) - NAA 1-naphthalene acetic acid - PVP polyvinylpyrrolidone - RFS-135 rainfed selection 135 - SE standard error  相似文献   

4.
Plants were obtained via somatic embryogenesis in callus derived from in vitro raised leaf and petiole explants of Aconitum heterophyllum Wall. Callus was induced on a Murashige-Skoog medium supplemented with either 2,4-dichlorophenoxy acetic acid (2,4-d 1 mg l-1) and kinetin (KN 0.5 mg l-1) with coconut water (CW 10% v/v) or naphthalene acetic acid (NAA 5 mg l-1) and benzylaminopurine (BAP 1 mg l-1). Somatic embryos appeared after 2–3 months or 2 subculture passages when 2,4-d or NAA induced source of the callus was transferred to a MS medium containing BAP (1 mg l-1) and NAA (0.1 mg l-1). For successful plantlet formation, the somatic embryos were transferred to a medium containing 1/4 strength MS nutrient with indole-3-butyric acid (IBA 1 mg l-1). Alternatively, the somatic embryos were dipped in a concentrated solution of IBA for 5 min and placed on a hormone free medium. Complete plantlets were formed after 4 weeks and were transferred successfully to soil.CIMAP Publication No. 1020.  相似文献   

5.
Somatic embryos and embryogenic callus were initiated from immature zygotic embryos of ginseng (Panax ginseng C.A. Meyer). These somatic embryos were multiplied by adventitious (secondary and tertiary) embryogenesis and their growth and development were dependent on growth hormones in the medium. Auxins, 2,4-d, NAA, and IAA at 1.0 mg l-1 were effective in inducing secondary and tertiary somatic embryos, which proliferated directly from the apical or cotyledonary portions of the primary somatic embryos. Single somatic embryos or clusters or embryos developed from the explanted primary embryos. Cytokinin (Kn, BA) inhibited adventitious embryogenesis. Secondary somatic embryos developed to maturation and later regenerated into plantlets in two stage process; firstly elongation of the shoot axes on MS +1.0 mg l-1 Kn, secondly formation of root on 1.0 mg l-1 Kn+1.0 mg-1 GA3 medium.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - IAA in-doleacetic acid - Kn kinetin - BA benzylaminopurine - PSE primary somatic embryo - SSE secondary somatic embryo - TSE tertiary somatic embryo  相似文献   

6.
Somatic embryos from immature cotyledons in peanut (Arachis hypogaea) were initiated on media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-d). Over 90% primary embryogenesis and 41–46% repetitive embryogenesis were obtained 12 weeks after initiation by maintaining embryogenic cultures on medium containing 20 mg 1-1 2,4-d. Maintenance of cultures on medium with 30 or 40 mg I-1 2,4-d resulted in lower primary and secondary embryogenesis, and proliferation of nonembryogenic callus. Transfer of embryogenic cultures to a secondary medium with 10 or 20 mg I-1 2,4-d significantly enhanced secondary embryogenesis compared to basal medium without the growth regulator. The use of Murashige & Skoog versus Finer's media had no significant effect on embryogenesis (85–95%), repetitive embryogenesis (11–37%) or mean embryo number. Secondary embryogenesis was also maintained for over one year by repeated subculture of isolated somatic embryos on medium with 20 mg I-1 2,4-d.Abbreviations B5 Gamborg et al. medium (Gamborg et al. 1968) - 2,4-d 2,4-dichlorophenoxyacetic acid - FN Finer & Nagasawa medium (Finer & Nagasawa 1968) - MS Murashige & Skoog medium (Murashige & Skoog 1962)  相似文献   

7.
Cucumber (Cucumis sativus L.) leaf explants were cultured either continuously on standard medium containing 4.5 µM 2,4- dichlorophenoxyacetic acid (2,4-d) and 4.4 µM benzylaminopurine, or first cultured for various periods at different levels of 2,4-d, picloram or naphthaleneacetic acid (NAA), and then transferred to standard medium. When cultured continuously on standard medium, less than 10% of the explants formed embryogenic callus. Initial culture on picloram or NAA, or on 2,4-d at a low concentration (1.4 µM) did not result in any embryogenic callus formation. Embryogenic callus formation increased to 40% if during the initial phase of the culture (10 days), the 2,4-d concentration was raised to 14 µM. Prolonged culture on 14 µM 2,4-d resulted in less embryogenic callus formation.Abbreviations BA benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid  相似文献   

8.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

9.
A simple and effective method of regenerating Syngonium podophyllum ‘Variegatum’ via direct somatic embryogenesis has been established. Leaf and petiole explants were cultured on Murashige and Skoog (MS) medium supplemented with N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) or N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (TDZ) with either α-naphthalene acetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Somatic embryos directly formed at one or two sides of petiole explants on MS medium supplemented 2.5 mg l−1 TDZ with 0.5 mg l−1 NAA or 2.0 mg l−1 TDZ with 0.2 mg l−1 NAA or with 0.2 and 0.5 mg l−1 2,4-D, respectively. The frequency of petiole explants with somatic embryos produced was as high as 86% when cultured on medium containing 2.5 mg l−1 TDZ with 0.5 mg l−1 NAA. Up to 85% of somatic embryos were able to germinate after transferring onto medium containing 2.0 mg l−1 6-benzylaminopurine (BA) and 0.2 mg l−1 NAA. Approximately 50–150 plantlets were regenerated from a single petiole explant. However, there was no somatic embryo formation from leaf explants regardless of growth regulator combinations used. Regenerated plantlets from petiole explants were stable and grew vigorously after transplanting to a soilless container substrate in a shaded greenhouse.  相似文献   

10.
Plant regeneration through indirect somatic embryogenesis has been established on Holostemma ada-kodien Schult. Type of auxin significantly influenced somatic embryogenesis. Friable callus, developed from leaf, internode and root explants on Murashige and Skoog (MS) medium supplemented with 2,4-D (1.0 mg l–1), was most effective for the induction of somatic embryos. Subculture of the friable callus developed on 2,4-D (1.0 mg l–1) onto solid or liquid 1/2 MS medium with 0.1 or 0.5 mg l 2,4-D turned the callus embryogenic. Suspension cultures were superior to static cultures (solid medium) for the induction of somatic embryos. Transfer of embryogenic callus to liquid 1/2 or 1/4 MS medium with lower levels of 2,4-D (0.05–0.1 mg l–1) induced the highest number of somatic embryos. An average of 40 embryos were obtained from 10 mg callus. Fifty per cent embryos exhibited maturation and conversion upon transfer to 1/10 MS basal solid medium. Plantlets were established in field conditions and 90 per cent survived.  相似文献   

11.
The influence of maltose and growth regulators on microspore culture response was investigated in japonica rice. High frequency of callus induction of isolated microspores was obtained with liquid medium containing MS salts, 100 mg l–1 myo-inositol, 1 mg l–1 thiamine-HCl, 500 mg l–1 glutamine, 60 g l–1 maltose, and several growth regulators. The effect of maltose on promoting callus formation was associated with keeping a high proportion of swollen microspores after 5 day preculture and increasing the microspore division rate on the 3rd day after culture initiation. No significant effect of maltose in place of sucrose on plantlet regeneration was seen in regeneration medium. Among the growth regulators tested, the combination of auxin 2,4-dichlorophenoxyacetic acid (1 mg l–1), naphthaleneacetic acid (1 mg l–1), and cytokinin (6-benzyl-aminopurine 1 mg l–1) in the medium proved to be much better for callus formation than in the other media, and the percentage of callusing microspores of that medium reached 0.86%. Indole-3-acetic acid (0.5 mg l–1) and kinetin (2 mg l–1) in regeneration medium were beneficial for green plantlet differentiation. The results also showed that the frequencies of microspores initial division, callus formation and green plant regeneration varied among genotypes no matter what kind of growth regulator and sugar were used. Xiushui 117 was the best variety for callusing followed by 02428 & Taipei 309. Taipei 309 showed a good ability for green plantlet regeneration.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - 6-BA 6-benzylaminopurine - KT kinetin - IAA indole-3 acetic acid  相似文献   

12.
In vitro grown inflorescences of Bambusa edulis were used to investigate the process of vegetative shoot growth in detail. The findings revealed that auxins and ACC could be significant growth regulators in this process. Overall, auxins [NAA, indolebutyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)] induced inflorescences to grow vegetative shoots. However, the efficiency of shoot regeneration varied. A greater percentage (27.3–34.5) of inflorescences in the 5 mg l−1 NAA, 10 mg l−1 NAA, and 1 mg l−1 2,4-D treatments formed more vegetative shoots than those exposed to other treatments. IBA promoted shoot regeneration less effectively than NAA and 2,4-D. Fifty percent of regenerated vegetative shoots flowered after 2 months when the medium was supplemented with 5 mg l−1 NAA. All shoots that received 1 mg l−1 1-amino-cyclopropane-1-carboxylic acid (ACC) flowered in 5 mg l−1 NAA medium. Rooted plantlets were used to examine their survival following in vitro flowering. All plantlets with vegetative shoots, even those with inflorescences, survived and grew.  相似文献   

13.
Induction of embryogenic calli from immature zygotic embryos of maize requires the presence of 2,4-D or similar auxin-like growth regulators in the culture medium. Pulse-chase experiments with 2,4-D, using various concentrations of 2,4-D in the induction medium were tested in relation to induction of callus in the embryogenic inbred line A188 and the non-embryogenic inbred A632. Interactions of 2,4-D, 3,5-D and the auxin transport inhibitor TIBA were also studied. Pulse-chase experiments showed that exposure to 2,4-D influenced the culture response from 0.5 h onwards. After a pulse of 0.5 h, shoot and root elongation of the embryo was stimulated. A pulse of 16 h or longer induced outgrowths and callus formation at the basal side of the scutellum. Pulses of 7 days and longer resulted in the induction of friable embryogenic Type II callus in A188. Embryos were cultured at 2,4-D concentrations ranging from 0.002 to 2000 mg l−1 and optimal concentration for the induction of embryogenic callus in A188 was 2 mg l−1. At lower concentrations there was a transition between callus formation and germination; at increasing concentrations, callus induction was reduced and finally growth responses became blocked. When TIBA was added to medium without 2,4-D, root elongation decreased in a dose-dependent way suggesting the need of polar transport of endogenous auxins for root elongation. When added to medium with 2,4-D, TIBA caused suppression of callus formation, again pointing to the necessity of polar transport of 2,4-D. In combination with 2,4-D, cultures with 3,5-D resembled cultures at lower 2,4-D concentrations, pointing to a competitive interaction between 3,5-D and 2,4-D. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Huang XQ  Wei ZM 《Plant cell reports》2004,22(11):793-800
An efficient maize regeneration system was developed using mature embryos. Embryos were removed from surface-sterilized mature seeds and sliced into halves. They were used as explants to initiate callus on induction medium supplemented with 4.0 mg l–1 2,4-dichlorophenoxyacetic acid (2,4-D). The induction frequency of primary calli was over 90% for all inbred lines tested. The primary calli were then transferred onto subculture medium supplemented with 2.0 mg l–1 2,4-D. Following two biweekly subcultures, embryogenic calli were formed. Inclusion of a low concentration (0.2 mg l–1) of 6-benzylaminopurine (BA) in the subculture medium significantly promoted the formation of embryogenic callus. The addition of silver nitrate (10 mg l–1) also supported an increased frequency of embryogenesis. The embryogenic callus readily formed plantlets on regeneration medium supplemented with 0.5 mg l–1 BA. The regenerated plantlets were transferred to half-strength Murashige and Skoog medium supplemented with 0.6 mg l–1 indole-3-butyric acid to develop healthy roots. The regenerated plantlets were successful on transfer to soil and set seed. Using this system, plantlets were regenerated from seven elite maize inbred lines. The frequency of forming green shoots ranged from 19.8% to 32.4%. This efficient regeneration system provides a solid basis for genetic transformation of maize.Abbreviations BA 6-Benzylaminopurine - 2,4-D 2,4-Dichlorophenoxyacetic acid - IBA Indole-3-butyric acid - KT KinetinCommunicated by M.C. Jordan  相似文献   

15.
Clonal propagation of high-value forest trees by somatic embryogenesis can help meet industry needs for uniform and high quality raw materials. Low embryogenic tissue initiation frequencies for loblolly pine (Pinus taeda L.) pose a limitation in work towards commercialization of this technology. At the time our research began most work on somatic embryo culture initiation in loblolly pine reported success in the range of 1–5%. Activated carbon (AC) has been reported to improve many tissue culture systems including embryogenic tissue initiation in Douglas-fir. To improve initiation frequencies in loblolly pine, the development of an AC-containing system was explored. In order to better understand the availability of 2,4-dichlorophenoxyacetic acid (2,4-D) in initiation medium, we tracked media surface concentrations of free or available 2,4-D. Media containing 1/2 modified P6 salts, 1.5% maltose, 2% myo-inositol, case amino acids, glutamine, vitamins, and 0.4% Gelrite were modified to include 0.625 – 2.5 g l–1 of activated carbon (Sigma C-9157, acid washed) and 110 –440 mg l–1 2,4-D. Adsorption and availability of 2,4-D in AC-containing medium was tracked by C14 labeled 2,4-D present in surface moisture absorbed into filter paper. High correlations were found between–available 2,4-D and time when AC and initial 2,4-D concentrations were held constant,–available 2,4-D and AC concentration when initial added 2,4-D and time were held constant, and–available 2,4-D and initial 2,4-D when AC and time were held constant.All of these relationships were exponential, not linear. Multiple regression models inputting initial 2,4-D added to medium in mg l–1, activated carbon added to medium in %, and time in days, were able to explain 85–88% of the variability in available 2,4-D. These models can be used to achieve target levels of available 2,4-D by adjustment of initial 2,4-D levels or AC content.  相似文献   

16.
Sternbergia fischeriana is an endangered geophyte and therefore in vitro micropropagation of this plant will have great importance for germplasm conservation and commercial production. Bulb scale and immature embryo explants of S. fischeriana were cultured on different nutrient media supplemented with various concentrations of plant growth regulators. Immature embryos produced higher number of bulblets than bulb scales. Large numbers of bulblets were regenerated (over 80 bulblets/explants) from immature embryos on Murashige and Skoog (MS) medium supplemented with 4 mg l–1 6-benzylaminopurine (BA) and 0.25 mg l–1 -naphthaleneacetic (NAA) or 2 mg l–12,4-dichlorophenoxyacetic acid (2,4-D) after 14 months of culture initiation. Regenerated bulblets were kept at 5 °C for 5 weeks and then transplanted to a potting mixture.  相似文献   

17.
We report, an efficient protocol for plantlet regeneration from the cell suspension cultures of cowpea through somatic embryogenesis. Primary leaf-derived, embryogenic calli initiated in MMS [MS salts (Murashige and Skoog 1962) with B5 (Gamborg et al. 1968) vitamins] medium containing 2,4-Dichlorophenoxyacetic acid (2,4-D), casein hydrolysate (CH), and l-Glutamic acid-5-amide (Gln). Fast-growing embryogenic cell suspensions were established in 0.5 mg l–1 2,4-D, which resulted in the highest recovery of early stages of somatic embryos in liquid MMS medium. Embryo development was asynchronous and strongly influenced by the 2,4-D concentration. Mature monocotyledonary-stage somatic embryos were induced in liquid B5 medium containing 0.1 mg l–1 2,4-D, 20 mg l–1 l-Proline (Pro), 5 M Abscisic acid (ABA), and 2% mannitol. B5 medium was found superior for the maturation of somatic embryos compared to MS and MMS media. The importance of duration (5 d) for effective maturation of somatic embryos is demonstrated. A reduction in the 2,4-D level in suspensions increased the somatic embryo induction and maturation with decreased abnormalities. Sucrose was found to be the best carbon source for callus induction while mannitol for embryo maturation and maltose for embryo germination. Extension of hypocotyls and complete development of plantlet was achieved in half-strength B5 medium supplemented with 3% maltose, 2500 mg l–1 potassium nitrate, and 0.05 mg l–1 thidiazuron (TDZ) with 32% regeneration frequency. Field-established plants were morphologically normal and fertile. This regeneration protocol assures a high frequency of embryo induction, maturation, and plantlet conversion.  相似文献   

18.
High frequency embryogenesis in immature zygotic embryos of sunflower   总被引:2,自引:0,他引:2  
In the present investigation, nutritional requirements for induction of a high frequency of well formed somatic embryos (SEs) from zygotic embryos (ZEs) of sunflower were assessed. Variables like genotype, embryo size (0.5–10 mm), sucrose concentration (30–240 g l−1), carbohydrate source (sucrose, glucose, maltose), agar strength (0.2–1.0%), basal media (MS, Gamborg, Nitsch, White), photoperiod (light/dark) and temperature (20–36°C) were tested. All these variables except photoperiod had significant effect on the frequency of embryogenesis. Highest frequency of embryogenesis was facilitated by Gamborg basal salt media, 120–210 g l−1 sucrose, 0.8–1.0% agar, smaller sized embryos (0.5–2 mm) and incubation temperature of 28–32°C. In addition to these, growth regulator combinations (2,4-D, 2,4-D+kinetin, BA+NAA) in varying concentrations were tried. Media supplemented with 2,4-D promoted direct embryogenesis, BA+NAA facilitated formation of single/multiple shoots while there was no response on 2,4-D+kinetin supplemented media. Zygotic embryos with well differentiated embryos were transferred to growth regulator free half strength MS medium for whole plantlet development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Somatic embryogenesis from pea embryos and shoot apices   总被引:3,自引:0,他引:3  
Conditions were defined for plant regeneration via somatic embryogenesis in pea, using explants from immature zygotic embryos or from shoot apices. For the induction of somatic embryos, an auxin (picloram or 2,4-dichlorophenoxyacetic acid) was required. Embryogenic callus originated from embryonic axis tissue of immature embryos and from the axillary-bud region and the plumula of shoot apices. A clear effect of embryo size on somatic embryogenesis was shown. There were differences in frequency of somatic embryogenesis among the five genotypes used in the study. Additions of BA to auxin-containing medium reduced embryo production. Histological examinations confirmed the embryogenic nature of the immature embryo cultures and revealed that somatic embryos originated from the meristematic areas near the callus surface.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

20.
The effects of different factors on the embryogenesis and plant regeneration from mature embryos of Russian spring and winter genotypes were studied. Embryogenic callus induction was achieved on MS medium supplemented with different concentrations of 2,4-D (2,4-dichlorophenoxyacetic acid), 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) or Dicamba (3,6-dichloro-o-anisic acid). Although all auxins were able to induce callus from explants with high frequency (98–100%), Dicamba was more effective for the induction of embryogenic callus (21.8–38.3%). Maximum embryogenic callus formation and high number of regenerated plants were observed at 12 mg l−1 of Dicamba. The time exposure to Dicamba (7, 14, 21 and 28 days) had a significant effect on efficiency of somatic embryogenesis. When contact of explants with callus induction medium was increased from 7 to 21 days the rate of somatic embryogenesis and number of regenerated plants per embryogenic callus gradually increased from 13.0 to 38.4% and 3.6 to 8.0%, respectively. Supplement of additional auxins (indoleacetic acid (IAA), indolebutyric acid (IBA), and naphthaleneacetic acid (NAA)) to callus induction medium with Dicamba had a positive effect on the rate of embryogenic callus formation, while the average number of regenerated shoots was not affected. The best rate of somatic embryogenesis was observed at the addition of 0.5 mg l−1 IAA with Dicamba (61.0%). The optimum combination of Dicamba and IAA increased the efficiency of somatic embryogenesis and plant regeneration from seven spring and winter wheat genotypes, thought overall morphogenic capacity was still genotype dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号