首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to observe for extended periods of time individual tobacco cells growing in microculture has made it possible to describe the behavior of their nucleoli and contracting nucleolar vacuoles. Nucleoli typically disappeared in prophase and reappeared in telophase. If several nucleoli were present in telophase they generally fused to form only one or two during interphase. In one instance a nucleolus was seen to separate into two nucleoli prior to disappearance in late prophase. In aging and senescent cells the number of nucleoli or bodies similar to normal nucleoli often increased, and occasionally fragmentation of nucleoli was noted prior to death of cells. Budding of solid material from the nucleolus was also observed. The amount of nucleolar material decreased rapidly prior to death of tobacco cells. Nucleolar vacuoles were found to be a general and consistent component of tobacco cells in microculture. Nucleolar vacuoles typically formed and contracted repeatedly in interphase nuclei and apparently released a fluid material into the nucleus. Associated with the contraction of the nucleolar vacuoles was a corresponding decrease in diameter of the nucleolus. Nucleolar vacuoles were observed to occur in about 70% of the actively growing cells examined, whereas they were present in only 33% of the senescent or weakened cells. These data indicate a relationship between nucleolar vacuoles and the morphogenic status of the cells. Since it has been shown by others that the nucleolus is an active site of RNA metabolism, it is suggested that the contracting nucleolar vacuoles may be involved in the controlled release of a soluble product associated with RNA metabolism.  相似文献   

2.
In the present investigation we localized binding sites for the lectins WGA (wheat germ agglutinin), RCA I (Ricinus communis agglutinin), LFA (Limax flavus agglutinin) and SBA (soya bean agglutinin) in the 7-day-old mouse embryo at the ultrastructural level. Lectin binding sites were localized on formaldehyde fixed embryos, embedded in LR-Gold, using gold-labelled lectins. Binding sites for WGA and RCA I were observed at the surface of the embryonic ectoderm oriented towards the proamnion cavity and the outer surface of the extraembryonic and the embryonic endoderm. Staining for SBA and LFA binding sites was seen in the basement membrane of the ectoderm. Moreover, binding sites for LFA were observed in the nucleoli of cells of the ectodermal, the mesodermal and the endodermal layer and in free ribosomes located in the cytoplasm of these cells.  相似文献   

3.
Changes in the structure of the nucleolus during the cell cycle of the Chinese hamster cell in vitro were studied. Quantitative electron microscopic techniques were used to establish the size and volume changes in nucleolar structures. In mitosis, nucleolar remnants, "persistent nucleoli," consisting predominantly of ribosome-like granular material, and a granular coating on the chromosomes were observed. Persistent nucleoli were also observed in some daughter nuclei as they were leaving telophase and entering G1. During very early G1, a dense, fibrous material characteristic of interphase nucleoli was noted in the nucleoplasm of the cells. As the cells progressed through G1, a granular component appeared which was intimately associated with the fibrous material. By the middle of G1, complete, mature nucleoli were present. The nucleolar volume enlarged by a factor of two from the beginning of G1 to the middle of S primarily due to the accumulation of the granular component. During the G2 period, there was a dissolution or breakdown of the nucleolus prior to the entry of the cells into mitosis. Correlations between the quantitative aspects of this study and biochemical and cytochemical data available in the literature suggest the following: nucleolar reformation following division results from the activation of the nucleolar organizer regions which transcribe for RNA first appearing in association with protein as a fibrous component (45S RNA) and then later as a granular component (28S and 32S RNA).  相似文献   

4.
5.
6.
7.
Clonal analysis of early mammalian development   总被引:1,自引:0,他引:1  
Various extrinsic markers have been used to label single cells in the early mouse embryo. However, they are appropriate only for short-term experiments because of their susceptibility to dilution. Studies on cell lineage and commitments have therefore depended mainly on exploiting genes as markers by combining cells from embryos that differ in genotype at particular loci. Tissue recombination and transplantation experiments using such indelible intrinsic markers have enabled the fate of different cell populations in the blastocyst to be determined with reasonable precision. The trophectoderm and inner cell mass (i.c.m.) give rise to distinct complementary groups of tissues in the later conceptus, as do the primitive endodermal and primitive ectodermal components of the more mature i.c.m. When cloned by blastocyst injection, single i.c.m. cells colonize only those parts of host conceptuses that are derived from their tissue of origin. Thus, while clonal descendants of early i.c.m. cells can contribute to all tissues other than those of trophectodermal origin, primitive endodermal and primitive ectodermal clones are restricted, respectively, to the extraembryonic endoderm versus all i.c.m. derivatives except the extraembryonic endoderm. Interestingly, individual primitive ectoderm cells can include both germ cells and somatic cells among their mitotic descendants. By using the genetically determined presence versus absence of cytoplasmic malic enzyme activity as a cell marker, the deployment of clones has been made visible in situ in whole-mount preparations of extraembryonic membranes. Very little mixing of donor and host cells was seen in either the endoderm of the visceral yolk sac or the mesodermal and ectodermal layers of the amnion. In contrast, mosaicism in the parietal endoderm was so fine grained that, in all except 1 of 15 fields from several specimens that were analysed, the arrangement of donor and host cells did not differ significantly from that expected on the basis of their random association.  相似文献   

8.
9.
BMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning.  相似文献   

10.
Embryonic ectodermal cells of rat embryos were examined by light and electron microscopy during the early stage of neurulation. Before the onset of neurulation (day 9–6 hr embryos), the cells underwent certain characteristic ultrastructural changes; that is, apical cytoplasmic protrusions and free spherules appeared, numerous vacuoles were formed in the cytoplasm, mitochondria showed ballooning, and the endoplasmic reticulum became dilated. The amniotic cells derived from the embryonic ectoderm exhibited the same ultrastructural changes, but those from the extraembryonic mesoderm did not. Embryonic mesodermal cells and neuroectodermal cells also did not show these changes. In the middle stage of neurulation (day 9–12 hr embryos), the embryonic ectodermal cells and the amniotic cells derived from the embryonic ectoderm assumed a flat squamous shape. None of the ultrastructural changes observed in day 9–6 hr embryos were noted in these cells. The functional significance of the production of apical cytoplasmic protrusions and free spherules in the embryonic ectodermal cells and amniotic cells is discussed in relation to similar phenomena reported to occur in other cell types.  相似文献   

11.
Using H253 mouse stock harboring X-linked HMG-lacZ transgene, we examined X chromosome inactivation patterns in sectioned early female embryos. X-gal staining patterns were generally consistent with the paternal X inactivation in the trophectoderm and the primitive endoderm cell lineages and random inactivation in the epiblast lineages. The occurrence of embryonic visceral endoderm cells apparently at variance with the paternal X chromosome inactivation in 7.5 dpc embryos was explained by the replacement of visceral endoderm cells with cells of epiblast origin. The frequency of cells negative for X-gal staining in 4.5-5.5 dpc XmXp* embryos fluctuated considerably especially in the extraembryonic ectoderm and the primitive endoderm, whereas it was less variable in the embryonic ectoderm. We could not, however, determine whether it is a normal phenomenon revealed for the first time by the use of HMG-lacZ transgene or an abnormality caused by the multicopy transgene.  相似文献   

12.
Dividing cells of Spirogyra sp. were examined with both the light and electron microscopes. By preprophase many of the typical transverse wall micro-tubules disappeared while others were seen in the thickened cytoplasmic strands. Microtubules appeared in the polar cytoplasm at prophase and by prometaphase they penetrated the nucleus. They were attached to chromosomes at metaphase and early anaphase, and formed a sheath surrounding the spindle during anaphase; they were seen in the interzonal strands and cytoplasmic strands at telophase. The interphase nucleolus, containing 2 distinct zones and chromatinlike material, fragmented at prophase; at metaphase and anaphase nucleolar material coated the chromosomes, obscuring them by late anaphase. The chromosomes condensed in the nucleoplasm at prophase, moving into the nucleolus at prometaphase. The nuclear envelope was finally disrupted at anaphase during spindle elongation; at telophase membrane profiles coated the reforming nuclei. During anaphase and early telophase the interzonal region contained vacuoles, a few micro-tubules, and sometimes eliminated n ucleolar material; most small organelles, including swollen endoplasmic reticulum and tubular membranes, were concentrated in the polar cytoplasm. Quantitative and qualitative cytological observations strongly suggest movement of intact wall rnicrotubules to the spindle at preprophase and then back again at telophase.  相似文献   

13.
Orthotopic grafts of [3H]thymidine-labelled cells have been used to demonstrate differences in the normal fate of tissue located adjacent to and in different regions of the primitive streak of 8th day mouse embryos developing in vitro. The posterior streak produces predominantly extraembryonic mesoderm, while the middle portion gives rise to lateral mesoderm and the anterior region generates mostly paraxial mesoderm, gut and notochord. Embryonic ectoderm adjacent to the anterior part of the streak contributes mainly to paraxial mesoderm and neurectoderm. This pattern of colonization is similar to the fate map constructed in primitive-streak-stage chick embryos. Similar grafts between early-somite-stage (9th day) embryos have established that the older primitive streak continues to generate embryonic mesoderm and endoderm, but ceases to make a substantial contribution to extraembryonic mesoderm. Orthotopic grafts and specific labelling of ectodermal cells with wheat germ agglutinin conjugated to colloidal gold (WGA-Au) have been used to analyse the recruitment of cells into the paraxial mesoderm of 8th and 9th day embryos. The continuous addition of primitive-streak-derived cells to the paraxial mesoderm is confirmed and the distribution of labelled cells along the craniocaudal sequence of somites is consistent with some cell mixing occurring within the presomitic mesoderm.  相似文献   

14.
15.
Summary The silver impregnation of nucleolar material facilitated the study of the morphological changes which take place in the nucleolus throughout the division cycle in root tip cells ofAllium cepa. The nucleolus appears to undergo no morphological changes throughout the interphase. It undergoes disorganization during the prophase, while in the telophase it appears uniformly on the chromatin as condensing into prenucleolar bodies.The appearance of the prenucleolar bodies is unaffected by puromycin, cordycepin, or ethidium bromide. This suggests that the argyrophilic material does not undergo synthesis during the telophase, nor require RNA or protein synthesis to effect the aggregation into prenucleolar bodies. However, the organization of nucleoli from prenucleolar bodies is inhibited by both cordycepin and ethidium bromide, suggesting that RNA synthesis is involved in this proccess.In aneuploid nuclei induced by treatment with colchicine we observed the appearance of prenucleolar bodies during the telophase even in the absence of the nucleolar organizer, but in this case the formation of nucleoli fails to take place. The nucleolar organizers proved to be capable of acting only in the nucleus to which they belong, but not on other nuclei within the same cytoplasm belonging to multinucleate cells.It seems logical to assume that one of the roles of the nucleolar organizer is related with the above-mentioned RNA synthesis, which is required to the aggregation of prenucleolar bodies into nucleoli.The work reported in the paper was undertaken during the tenure of a Research Training Fellowship awarded by the International Agency for Research on Cancer.  相似文献   

16.
The dynamics of postmitotic reassembly of the nucleolus   总被引:17,自引:0,他引:17  
Mammalian cell nucleoli disassemble at the onset of M-phase and reassemble during telophase. Recent studies showed that partially processed preribosomal RNA (pre-rRNA) is preserved in association with processing components in the perichromosomal regions (PRs) and in particles called nucleolus-derived foci (NDF) during mitosis. Here, the dynamics of nucleolar reassembly were examined for the first time in living cells expressing fusions of the processing-related proteins fibrillarin, nucleolin, or B23 with green fluorescent protein (GFP). During telophase the NDF disappeared with a concomitant appearance of material in the reforming nuclei. Prenucleolar bodies (PNBs) appeared in nuclei in early telophase and gradually disappeared as nucleoli formed, strongly suggesting the transfer of PNB components to newly forming nucleoli. Fluorescence recovery after photobleaching (FRAP) showed that fibrillarin-GFP reassociates with the NDF and PNBs at rapid and similar rates. The reentry of processing complexes into telophase nuclei is suggested by the presence of pre-rRNA sequences in PNBs. Entry of specific proteins into the nucleolus approximately correlated with the timing of processing events. The mitotically preserved processing complexes may be essential for regulating the distribution of components to reassembling daughter cell nucleoli.  相似文献   

17.
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm‐like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.  相似文献   

18.
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.  相似文献   

19.
20.
The nucleolus of Chinese hamster tissue culture cells (strain Dede) was studied in each stage of mitosis with the electron microscope. Mitotic cells were selectively removed from the cultures with 0.2 per cent trypsin and fixed in either osmium tetroxide or glutaraldehyde followed by osmium tetroxide. The cells were embedded in both prepolymerized methacrylate and Epon 812. Thin sections of interphase nucleoli revealed two consistent components; dense 150-A granules and fine fibrils which measured 50 A or less in diameter. During prophase, distinct zones which were observed in some interphase nucleoli (i.e. nucleolonema and pars amorpha) were lost and the nucleoli were observed to disperse into smaller masses. By late prophase or prometaphase, the nucleoli appeared as loosely wound, predominantly fibrous structures with widely dispersed granules. Such structures persisted throughout mitosis either free in the cytoplasm or associated with the chromosomes. At telophase, those nucleolar bodies associated with the chromosomes became included in the daughter nuclei, resumed their compact granular appearance, and reorganized into an interphase-type structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号