首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enthalpies of reaction of HMo(CO)3C5R5 (R = H, CH3) with diphenyldisulfide producing PhSMo(CO)3C5R5 and PhSH have been measured in toluene and THF solution (R = H, ΔH= −8.5 ± 0.5 kcal mol−1 (tol), −10.8 ± 0.7 kcal mol−1 (THF); R = CH3, ΔH = −11.3±0.3 kcal mol−1 (tol), −13.2±0.7 kcal mol−1 (THF)). These data are used to estimate the Mo---SPh bond strength to be on the order of 38–41 kcal mol−1 for these complexes. The increased exothermicity of oxidative addition of disulfide in THF versus toluene is attributed to hydrogen bonding between thiophenol produced in the reaction and THF. This was confirmed by measurement of the heat of solution of thiophenol in toluene and THF. Differential scanning calorimetry as well as high temperature calorimetry have been performed on the dimerization and subsequent decarbonylation reactions of PhSMo(CO)3Cp yielding [PhSMo(CO)2Cp]2 and [PhSMo(CO)Cp]2. The enthalpies of reaction of PhSMo(CO)3Cp and [PhSMo(CO)2Cp]2 with PPh3, PPh2Me and P(OMe)3 have also been measured. The disproportionation reaction: 2[PhSMo(CO)2Cp]2 → 2PhSMo(CO)3Cp + [PhSMP(CO)Cp]2 is reported and its enthalpy has also been measured. These data allow determination of the enthalpy of formation of the metal-sulfur clusters [PhSMo(CO)nC5H5]2, N = 1,2.  相似文献   

2.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

3.
σ-Methyl-(η5-indenyl) chromium tricarbonyl (III) rearranges quantitatively into η6-1-endo-methylindene) chromium tricarbonyl (IV) in C6D6 solution at 30–60°C. Methyl group attachment to the positions 2 or 3 of indenyl ligand in (III) has no influence on the activation parameters of this ricochet inter-ring haptotropic rearrangement (ΔG#=23.6 kcal mol−1; ΔH#=18.9±0.2 kcal mol−1; ΔS#=−18.6±0.2 cal K−1 mol−1). (IV) undergoes further irreversible isomerization at 60–120° into (ν6-3-methylindene) chromium tricarbonyl (V) with a higher activation barrier (ΔG#=28.5±0.1 kcal mol−1) via two consecutive [1,5]-sigmatropic hydrogen shifts. The mechanisms of both rearrangements have been studied in detail using density functional theory (DFT) calculations with extended basis sets. Calculations show that the rearrangement (III) → (IV) proceeds in two steps. Methyl group migration from chromium into position 1 of the indenyl ligand is the rate-determining step leading to the formation of the 16-electron intermediate (VII). The calculated activation barrier (Ea=19.6 kcal mol−1) is in good agreement with the experimental one. Further rearrangement (VII) → (V) proceeds via a trimethylenemethane-type transition state (XVIII) with an activation barrier 11.8 kcal mol−1. The coordination of the chromium tricarbonyl group at the six-membered ring has only minor influence on the kinetic parameters of the hydrogen [1,5]-sigmatropic shift in indene.  相似文献   

4.
1H NMR line broadening is found to be an effective complimentary method to chemical trapping for determining the rates and activation parameters for organo-metal bond homolysis events that produce freely diffusing radicals. Application of this method is illustrated by measurement of bond homolysis activation parameters for a series of organo-cobalt porphyrin complexes ((TPP)Co-C(CH3)2CN (ΔH = 19.5±0.9 kcal mol−1, ΔS = 12±3 cal°K−1 mol−1), (TMP)Co-C(CH3)2CN (ΔH = 20±1 kcal mol−1S = 13±2 cal°K−1 mol−1), (TAP)Co-C(CH3)2CO2CH3H = 18.2±0.5 kcal mol−1, ΔS = 12±2 cal °K−1 mol−1), (TAP)Co-CH(CH3)C6H5H = 22.5±0.5, ΔS = 17±2 cal °K−1 mol−1)). The line broadening method is particularly useful in determining activation parameters for dissociation of weakly bonded organometallics where the rate of homolysis can exceed the range measurable by conventional chemical trapping methods.  相似文献   

5.
Oxygenation of [CuII(fla)(idpa)]ClO4 (fla=flavonolate; IDPA=3,3′-iminobis(N,N-dimethylpropylamine)) in dimethylformamide gives [CuII(idpa)(O-bs)]ClO4 (O-bs=O-benzoylsalicylate) and CO. The oxygenolysis of [CuII(fla)(idpa)]ClO4 in DMF was followed by electronic spectroscopy and the rate law −d[{CuII(fla)(idpa)}ClO4]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2] was obtained. The rate constant, activation enthalpy and entropy at 373 K are kobs=6.13±0.16×10−3 M−1 s−1, ΔH=64±5 kJ mol−1, ΔS=−120±13 J mol−1 K−1, respectively. The reaction fits a Hammett linear free energy relationship and a higher electron density on copper gives faster oxygenation rates. The complex [CuII(fla)(idpa)]ClO4 has also been found to be a selective catalyst for the oxygenation of flavonol to the corresponding O-benzoylsalicylic acid and CO. The kinetics of the oxygenolysis in DMF was followed by electronic spectroscopy and the following rate law was obtained: −d[flaH]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2]. The rate constant, activation enthalpy and entropy at 403 K are kobs=4.22±0.15×10−2 M−1 s−1, ΔH=71±6 kJ mol−1, ΔS=−97±15 J mol−1 K−1, respectively.  相似文献   

6.
We report extensive density functional theory studies of the structures and vibrational frequencies of Tp3,5-MeRhH2(H2) in its ground and various transition states as well as the first direct comparison of observed and calculated inelastic neutron scattering (INS) vibrational spectra on this type of compound. Geometry optimizations produced canted η2-dihydrogen dihydride local minima of C1 symmetry; with HH distances for the C1 minimum energy structure of 0.842 and 0.898 Å and barriers to rotation of 0.34 and 0.50 kcal mol−1, respectively for B3LYP/BS1 and BP86/BS1 calculations of Tp3,5-MeRhH2(H2). The latter results from one transition state rotated approximately 60° away (a second lower energy transition state which is a few hundreds of a kcal mol−1 above the C1 MIN is rotated approximately 30° away). With these calculated d(HH) values for the C1 MIN the previously reported experimental data on the rotation of the dihydrogen ligand yields an experimental barrier to rotation of 1 kcal mol−1 and places the torsional transition at 200 cm−1 in the INS spectrum. Optimization of the Rh structure, that is analogous to the related Ir(V) Cs minimum found for TpIrH4, generates a high-energy (>4 cal mol−1) Cs transition state TpRhIIIH4 structure with an η3-H3 − ligand. This transition state (Cs TSE) exchanges the hydrogen in the mirror plane between two chiral C1 MIN structures. Comparisons between observed and computed INS spectra suggests that the experimental INS spectrum be viewed as resulting from a quantum-averaged ground state encompassing at least two of the low energy structures found in our calculations.  相似文献   

7.
The purpose of this study was to measure heats involved in the hydrolysis process for the industrial production of 6-aminopenicillanic acid (6-APA) using dynamic calorimetry techniques. The experimental design was planned using Hess' law. The information derived from the calorimeter was correlated mathematically to determine the heat released during enzymatic hydrolysis. This is important for temperature control systems and reactor design. The results obtained with the calorimetric measurements at 308 K and pH 7.5 are the penicillin hydrolysis, ΔHhydrol, at 35.9 ± 5.7 kJ mol−1 and phenyl acetic acid neutralization, ΔHneut, at −47.1 ± 3.8 kJ mol−1.  相似文献   

8.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

9.
Proton NMR studies of N,N-diethylformamide (def) exchange on [M(Me6tren)def]2+ where M = Co and Cu yield: kex (298.2K) = 26.3 ± 2.2, 980 ± 70 s−1; ΔH = 58.3 ± 1.7, 36.3 ± 0.9 kJ mol−1; ΔS= −22.2 ± 4.6, −65.9 ± 2.5 J K−1 mol−1; and ΔV = −1.3 ± 0.2, 5.3 ± 0.3 cm3 mol−1 respectively. These data which are consistent with a and d activation modes operating when M = Co and Cu respectively are compared with data for related systems.  相似文献   

10.
The equilibria and dynamics of the disorder-to-order transition of the anionic polysaccharide iota-carrageenan have been studied in the presence of tetramethyl-ammonium salts. By the use of a stopped-flow polarimeter, the rate equation and temperature dependence of the observed forward rate-constant were found to accord with a co-operative dimerisation process. Activation parameters for helix nucleation were shown to be independent of the anion for solutions containing tetramethylammonium chloride and bromide, i.e., ΔH = 1 ±3 kJ.mol−1, ΔS = −178 ±10 J.mol−1.K−1, ΔG298K = 54 ±2 kJ.mol−1, and knuc,298K = 1880 ±80 dm3.mol−1.s−1. The temperature dependence of optical rotation was also shown to be independent of the anion present.  相似文献   

11.
P.M. Vignais  P.V. Vignais 《BBA》1973,325(3):357-374

1. 1. Fuscin, a mould metabolite, is a colored quinonoid compound which reacts readily with −SH groups to give colorless addition derivatives.

2. 2. Binding of fuscin to mitochondria has been monitored spectrophotometrically. Fuscin binding is prevented by −SH reagents such as N-ehylmaleimide, N-Methylmaleimide, mersalyl or p-chloromercuribenzoate. Conversely, fuscin prevents the binding of −SH reagents as shown with N-[14C]ethylmaleimide. Once bound to mitochondria, fuscin is not removable by washing of mitochondria.

3. 3. High affinity-fuscin binding sites (Kd = 1 μM, N = 4–8 nmoles/mg protein) are present in whole mitochondria obtained from rat heart, rat liver, pigeon heart or yeast (Candida utilis). They are lost upon sonication but are still present in digitonin inner membrane + matrix vesicles. On the other hand, lysis of mitochondria by Triton X-100 does not increase the number of high affinity binding sites indicating that all these sites are accessible to fuscin in whole mitochondria. The number of fuscin high affinity sites appears to correlate with the glutathione content of mitochondrial preparations.

4. 4. Fuscin as well as N-ethylmaleimide and avenaciolide are penetrant SH-reagents;

5. 5. Fuscin interferes with the ADP-stimulated respiration of mitochondria on NAD-linked substrates, several functions of the mitochondrial respiratory apparatus being inhibited by fuscin in a non-competitive manner, but to various extents: (a) The electron transfer chain (Ki in the range of 0.1 mM); (b) the lipoamide dehydrogenase system (Ki = 5–10 μM); (c) the transport systems of phosphate (Ki ≈ 20 μM) and of glutamate (Ki = 3–5 μM); (d) the ADP transport, indirectly (Ki ≈ 10 μM).

6. 6. Like N-ethylmaleimide, fuscin inhibits the glutamate-OH carrier, the inhibition of that carrier bringing about an apparent increase of aspartate entry in glutamate-loaded mitochondria by the glutamate-aspartate carrier.

7. 7. The inhibition of phosphate transport by fuscin probably accounts for the inhibition of the reduction of endogenous NAD by succinate in intact pigeon heart mitochondria.

8. 8. By binding the −SH groups of mitochondrial membrane specifically unmasked by addition of micromolar amounts of ADP, fuscin, like N-ethylmaleimide, prevents the functioning of ADP translocation.

9. 9. Because of their specific and analogous effects on some well defined mitochondrial functions such as glutamate transport and ADP transport, fuscin and N-ethylmaleimide can be distinguished from other −SH reagents. The lipophilic nature of fuscin and N-ethylmaleimide which accounts for the accessbility of these compounds to hydrophobic sites in the mitochondrial membrane or on the matrix side of this membrane may be partly responsible for their characteristic inhibitory effects on mitochondrial functions.

Abbreviations: DTNB, 5,5′-dithio-bis-(2-nitrobenzoic acid); PCMB, p-chloromercuribenzoate  相似文献   


12.
A series of dihydroxamic acid ligands of the formula [RN(OH)C(O)]2(CH2)n, (n = 2, 4, 6, 7, 8; R = CH3, H) has been studied in 2.0 M aqueous sodium perchlorate at 25.0 °C. These ligands may be considered as synthetic analogs to the siderophore rhodotorulic acid. Acid dissociation constants (pKa) have been determined for the ligands and for N-methylacetohydroxamic acid (NMHA). The pKa1 and pKa2 values are: n = 2, R = CH3 (8.72, 9.37); N = 4, R = CH3 (8.79, 9.37); N = 6, R = CH3; N = 7, R = CH3 (8.95, 9.47); N = 8, R = CH3 (8.93, 9.45); N = 8, R = H (9.05, 9.58). Equilibrium constants for the hydrolysis of coordinated water (log K) have been estimated for the 1:1 feeric complexes of the ligands n = 2, 4, 8; R = CH3. The N = 8 ligand forms a monomeric complex with Fe(III) while the n = 2 and 4 ligands form dimeric complexes. For hydrolysis of the n = 8 monomeric complex, log K1 = −6.36 and log K2 = −9.84. Analysis of the spectrophotometric data for the dimeric complexes indicates deprotonation of all four coordinated waters. The successive hydrolysis constants, log K1–4, for the dimeric complexes are as follows: n = 2 (−6.37, −5.77, −10.73, −11.8); n = 4 (−5.54, −5.07, −11.57, −10.17). The log K2 values for the dimers are unexpectedly high, higher in fact than log K1, inconsistent with the formation of simple ternary hydroxo complexes. A scheme is proposed for the hydrolysis of the ferric dihydroxamate dimers, which includes the possible formation of μ-hydroxo and μ-oxo bridges.  相似文献   

13.
The equilibrium denaturation of tetrameric soybean agglutinin (SBA) in urea and guanidine hydrochloride (GdnHCl) has been examined by steady-state fluorescence and size-exclusion chromatography. The denaturation of SBA reveals two distinct and separable transitions: dissociation (native tetramer↔tertiary monomer) and unfolding (tertiary monomer↔unfolded monomer). The urea denaturation curves of N-dimethyl and acetyl derivatives of SBA are also similar to unmodified lectin but the midpoints, [D]1/2, are shifted to lower denaturant concentrations. The free energy of stabilization of tertiary structure (ΔGu,aq) of SBA is estimated to be 4.5–4.6 kcal mol−1, which shows a decrease by 10–15% for both N-dimethyl SBA and acetyl-SBA. The free energy term (ΔGd, aq) for the relative stability of the quaternary structure of SBA and its derivatives shows that the decrease in stability relative to SBA occurs by <10% for N-dimethyl SBA while for acetyl-SBA, this occurs by 30%. However, the m values depicting the dependence of free energy on denaturant concentration for SBA and its derivatives are similar for dissociation as well as unfolding, which suggest similar denaturation pathways of unmodified and modified SBA.  相似文献   

14.
The reactions of complex (C5Me5)Ir(Cl) (CO) (Me) (1a) with cyclohexylisocyanide and phosphines (L=CyNC, PHPh2, PMePh2, PMe2Ph) give the products of alkyl migratory insertion (C5Me5Ir(Cl) (COMe) (L), in toluence or tetrahydrofuran at 323 K or higher temperature. The phenyl analogue (C5Me5)Ir(Cl)(CO)(Ph) or the iodide complexes (C5Me5)Ir(I) (CO) (R) (R=Me, Ph_are not reactive under the same conditions. The reaction of (C5Me5)Ir(Cl)(CO)(Me) with PMePh2 and PMe2Ph in acetonitrile yields the chloride substitution product [(C5Me5)Ir(CO)(L)(Me)]+Cl. Kinetic measurements for the reactions of (C5Me5)Ir(Cl)(CO)(Me) in toluene are first order in the iridium complex and exhibit a saturation dependence on the incoming donors L. Analysis of the data suggests a two-step process involving (i) rapid formation of a molecular complex [(C5Me5)Ir(Cl)(CO)(Me), (L)], in which the structure of 1a is unperturbed within the limits of spectroscopic analysis, and (ii) rate determining methyl migration. The reaction parameters are K for the pre-equilibrium step (K = 1.5 (CyNC), 7.3 (PHPh2), 7.1 (PMePh2) dm3 mol−1 at 323 K) and k2 for the slow carbon---carbon bond formation (k2 (105) = 6.9 (CyNC), 1.2 (PHPh2), 1.0 (PMePh2) s−1 at 323 K). The activation parameters for the methyl migration step in the reaction with PMePh2 obtained between 308 and 338 K, are ΔH = 106±16 kJ mol−1 and ΔS = − 14±5 J K−1 mol−1. The reaction of 1a with PMePh2 proceeds at similar rates in tetrahydrofuran (K = 3.7 dm3 mol−1, k2 (105) = 1.2 s−1, 323 K). The crystal structure of (C5Me5)Ir(Cl)(COMe) (PMe2Ph) has been determined by X-ray diffraction. C20H29ClOPIr: Mr = 544.1, monoclinic, P21/n, A = 8.084 (2), B = 9.030(2), C = 28.715 (3) Å, β = 91.41 (3)°, Z = 4, Dc = 1.71 g cm−3, V = 2095.5 Å3, room temperatyre, Mo K, γ = 0.71069, μ = 65.55 cm−1, F(000) = 1044, R = 0.037 for 2453 independent observed reflections. The complex shows a deformed tetrahedral coordination assuming the η5-C5Me5 molecular fragment as a single coordination site. The iridium-chlorine bond is staggered with respect to two adjacent C(ring)-methyl bonds, while the Ir---P and the Ir---COMe bonds are eclipsed with respect to C(ring)-methyl bonds.  相似文献   

15.
The mononuclear manganese(III) complexes [C5H10NH2][MnL2] [L2−=a substituted N-(2-hydroxybenzyl)glycinate (hbg2−) viz. 3,5-dibromo- (3,5-Br-hbg2−), 3,5-dichloro- (3,5-Cl-hbg2−), 3-methyl-5-chloro- (3,5-Me,Cl-hbg2−), 5-bromo- (5-Br-hbg2−), 5-chloro- (5-Cl-hbg2−), 5-nitro- (5-NO2-hbg2−) or N-(5-nitro-2-hydroxybenzyl)sarcosine (5-NO2-hbs2−)] have been synthesised by reaction of the appropriate ligand with manganese(II) perchlorate under ambient conditions in a 2:1 molar ratio using piperidine as base. The structures of three of these complexes, [C5H10NH2][Mn(3,5-Cl-hbg)2] (2), [C5H10NH2][Mn(5-NO2-hbg)2] (6) and [C5H10NH2][Mn(5-NO2-hbs)2] (7) have been elucidated by single-crystal X-ray crystallography and each displays two similar, independent [MnL2] ions in the asymmetric unit linked via piperidinium cations through hydrogen bonding. The ligands co-ordinate in a facial tridentate fashion with the three donor atoms being the phenolate and carboxylate oxygens and the amine nitrogen. The geometry at the Mn centres is compressed rhombic octahedral consistent with a pseudo-Jahn–Teller compression along the Mn–O(phenolate) axis. Mean bond lengths are in the ranges 1.886–1.889 Å for the Mn–O(phenolate), 2.062–2.125 Å for the Mn–O(carboxylate) and 2.091–2.184 Å for the Mn–N(amine) distances. The magnetic susceptibility and electronic and IR spectroscopic data are discussed with reference to the crystal structures.  相似文献   

16.

1. 1. Cyanide inhibits the catalytic activity of cytochrome aa3 in both polarographic and spectrophotometric assay systems with an apparent velocity constant of 4·103 M−1·s−1 and a Ki that varies from 0.1 to 1.0 μM at 22 °C, pH 7·3.

2. 2. When cyanide is added to the ascorbate-cytochrome c-cytochromeaa3−O2 system a biphasic reduction of cytochrome c occurs corresponding to an initial Ki of 0.8 μM and a final Ki of about 0.1 μM for the cytochrome aa3−cyanide reaction.

3. 3. The inhibited species (a2+a33+HCN) is formed when a2+a33+ reacts with HCN, when a2+a32+HCN reacts with oxygen, or when a3+a33+HCN (cyano-cytochrome aa3) is reduced. Cyanide dissociates from a2+a33+HCN at a rate of 2·10−3 s−1 at 22 °C, pH 7.3.

4. 4. The results are interpreted in terms of a scheme in which one mole of cyanide binds more tightly and more rapidly to a2+a33+ than to a3+a33+.

Abbreviations: TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine  相似文献   


17.
The reversible equilibrium conversion under H2 of [RuCl(dppb) (μ-Cl)]2 (1) to generate (η2-H2) (dppb) (μ-Cl)3RuCl(dppb) in CH2Cl2 (dppb = Ph2P(CH2)4PPh2) has been studied at 0–25 °C by UV-Vis and 31P{1H} NMR spectroscopy, and by stoppe kinetics; the equilibrium constant and corresponding thermodynamic parameters, and the forward and reverse rate constants at 25 °C have been determined. A measured ΔH° value of 0 kJ mol−1 allows for an estimation of an exothermicity of 60 kJ mol−1 for binding an η2-H2 at an Ru(II) centre; a ΔS° value of 60 J mol−1 K−1 indicates that in solution 1 contain s coordinated CH2Cl2. The kinetic and thermodynamic data are compared to those obtained from a previously studied hydrogenation of styrene catalyzed by 1. Preliminary findings on related systems containing Ph2P(CH2)3PPh2 and (C6H11)2P(C6H11)2 are also noted.  相似文献   

18.
Density functional theory (DFT) computations at the B3LYP/Lanl2DZ level were used to elucidate the oxygen atom transfer (OAT) and coupled electron proton transfer (CEPT) reaction steps involved in the biomimetic catalytic cycle performed by polymer-supported MoVIO2(NN′)2 complexes [NN′ = phenyl-(pyrrolato-2-ylmethylene)-amine] with water as oxygen source, trimethyl-phosphane as oxygen acceptor and one-electron oxidising agents. The DFT method employed has been validated against experimental data [X-ray crystal structures of a NN′ ligand and a MoVIO2(NN′)2 complex as well as kinetic data]. The rate-limiting step in the forward-OAT from [MoVIO2] to PMe3 is the attack of PMe3 at an oxo ligand with ΔG (298 K) = 64.6 kJ mol−1. Dissociation of the product OPMe3 is facile with ΔG (298 K) = 26.3 kJ mol−1 giving a mono-oxo [MoIVO] complex which fills its coordination sphere with a further PMe3 substrate with ΔG (298 K) = 39.2 kJ mol−1. One-electron oxidation to a Mo(V) phosphane complex precedes the coordination of water/hydroxide. Additionally, the comproportionation of [MoVIO2] and [MoIVO] to dinuclear oxo-bridged [OMoV–O–MoVO] species has been calculated as the thermodynamic sink in this system and the back-OAT from dmso to mono-oxo [MoIVO] to give [MoVIO2] has been shown to involve an equilibrium between stereoisomeric [MoVIO2] complexes with an activation barrier of ΔG (298 K) = 113.1 kJ mol−1.  相似文献   

19.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

20.
J. Butler  G.G. Jayson  A.J. Swallow 《BBA》1975,408(3):215-222

1. 1. The superoxide anion radical (O2) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2 and ferrocytochrome c.

2. 2. At 20 °C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4 · 106 M−1 · s−1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2 and the form of cytochrome c which exists above pH ≈ 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2 reacts with the form present below pH 7.45 with k = 1.4 · 106 M−1 · s−1, the form above pH 7.45 with k = 3.0 · 105 M−1 · s−1, and the form present above pH 9.2 with k = 0.

3. 3. The reaction has an activation energy of 20 kJ mol−1 and an enthalpy of activation at 25 °C of 18 kJ mol−1 both above and below pH 7.45. It is suggested that O2 may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex.

4. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2–6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5 · 105–5 · 106 M−1 · s−1

.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号