首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rifamycin derivatives: specific inhibitors of nucleic acid polymerases   总被引:3,自引:0,他引:3  
Rifampicin and three rifamycin SV derivatives with different lipophilic side chains were tested as inhibitors of a number of purified enzymes including the α and αβ forms of RNA-directed DNA polymerase of avian myeloblastosis virus (AMV). AFABDMP (2,5-dimethyl-4-N-benzyl demethyl rifampicin), AF013 (O-n-octyloxime of 3-formyl rifamycin SV) and C-27 (rifamycin SV with a dicyclohexylalkyl substituted piperidyl ring at the 3-position) at concentrations less than 20 to 40 μg/ml completely inhibited the RNA- and DNA-directed DNA polymerase and RNase H activities of both AMV enzymes. Rifampicin was inactive at 100 μg/ml. When used against a variety of non-polymerizing enzymes such as alkaline phosphatase, glutamate-oxaloacetate transaminase, DNase I, and RNase A, these derivatives were inactive at drug concentrations between 100 and 200 μg/ml. Polynucleotide phosphorylase was inhibited slightly by all three derivatives. These results support the idea that rifamycin SV derivatives with appropriate 3-substituted side-chains are specific inhibitors of nucleic acid polymerizing enzymes.  相似文献   

2.
K M Rose  P A Ruch  S T Jacob 《Biochemistry》1975,14(16):3598-3604
Factors affecting the inhibition of RNA polymerase II from rat liver by the O-n-octyloxime of 3-formylrifamycin SV (AF/013) were investigated. Using either native or denatured calf-thymus DNA as template, almost complete inhibition of RNA polymerase II was observed when AF/013 was added directly to the enzyme. Considerable resistance to AF/013 was observed when RNA polymerase II was preincubated with denatured DNA at either 0 or 37 degrees. However, under similar conditions, no resistance was observed when enzyme was preincubated with native DNA. Only when AF/013 was added to the ongoing reaction using native DNA did a resistance to AF/013 occur. The inhibition of RNA polymerase II by AF/013 was competitive with respect to all four nucleoside triphosphate substrates. The inhibition by AF/013 remaining after enzyme-DNA complex formation also appeared competitive with nucleoside triphosphate levels. The effect of exogenous protein (bovine serum albumin, BSA) on the inhibition of RNA polymerase II was also investigated. BSA reduced the extent of inhibition by AF/013, but did not alter the competitive nature of inhibition. Concurrently, the inhibition of highly purified nuclear poly(A) polymerase from rat liver, a template independent enzyme which incorporates AMP in a chain elongation reaction, was examined. As in the case of RNA polymerase, poly(A) polymerase was inhibited by AF/013 in a manner competitive with the nucleoside triphosphate substrate. The competitive nature of inhibition of RNA polymerase by AF/013 with respect to all four nucleoside triphosphate substrates, before and after enzyme-DNA complex formation, as well as the competitive nature of inhibition of poly(A) polymerase with respect to ATP tend to indicate that the major effect of AF/013 on RNA polymerase II is at the level of the substrate binding as opposed to a specific inhibition of initiation.  相似文献   

3.
1. Rifamazine (AF/RP) a dimeric rifamycin, is active against bacterial DNA-dependent RNA polymerase and against viral RNA-dependent DNA polymerase. 2. Rifamazine is active also against DNA-dependent RNA polymerase extracted from rifampicin-resistant mutants of Escherichia coli. It does not interfere with enzyme-template interaction or with RNA elongation. It blocks initiation. 3. A comparison is made between the mechanism of action of rifamazine and that of rifampicin, and of AF/013 (octyloxime of 3-formylrifamycin SV), a C-class rifamycin. Our results show that the mechanism of action of rifamazine is more similar to that of rifampicin than to that of the octyloxime derivative. 4. Activity of rifamazine against RNA polymerase from rifampicin-resistant mutants is thought to be due to binding of the dimer to both the rifamycin-specific binding site and to a second weak site.  相似文献   

4.
Streptovaricins inhibit Focus Formation by MSV (MLV) Complex   总被引:9,自引:0,他引:9  
We recently reported that the streptovaricins inhibit the reaction by which DNA is transcribed from the RNA template resident in murine leukaemia virions (MLV)1. The reports2, 3 which first indicated that this DNA polymerase is present in oncogenic RNA viruses have been confirmed and extended4–8. The enzyme provides a mechanism whereby an RNA virus can insert stable genetic information into a host chromosome. Gallo and co-workers described an RNA dependent DNA polymerase in lymphoblastic leukaemic cells which was inhibited by N-demethylrifampicin9 and this antibiotic, together with a number of other rifamycin derivatives, also inhibited the oncogenic viral DNA polymerase10. Like the streptovaricins, the rifamycins are ansa macrolide antibiotics (Fig. 1).  相似文献   

5.
Several in vitro properties of partially purified form II RNA polymerase from Drosophila melanogaster embryo nuclei are described. The enzyme preparation is free from contaminating RNase, protein kinase, and polyphosphate kinase activities and can be used to study the incorporation of -32P-labeled nucleoside triphosphates. The enzyme exhibits a biphasic heat inactivation pattern which is probably related to differential lability of its two subforms. However, a considerable protection against heat inactivation is provided by the nucleoside triphosphates present in the in vitro reaction system such that the enzyme catalyzes RNA synthesis in a nearly linear mode for over 2 hr at 30 C. Two initiation inhibitors, rifamycin AF/013 and polyriboinosinic acid (poly[I]), were tested against this enzyme. Rifamycin AF/013 was found unsuitable for critical studies because of the high concentrations necessary for total inhibition (200 µg/ml) and particularly because of the obligate use of solvents which secondarily have a destabilizing effect on native DNA. Poly[I] was found to effectively block initiation at very low concentrations (1 µg/ml). The enzyme rapidly forms poly[I]-resistant preinitiation complexes on both double- and single-stranded DNA. These complexes decay with a half-life of 2.5–3 min. RNA synthesis from poly[I]-resistant complexes amounts to 10% of the total potential synthesis on both double- and single-stranded DNA. Enzyme-DNA saturation experiments indicate that the form II enzyme discriminates two types of sites on Drosophila DNA, tight binding and weak binding, from which RNA synthesis proceeds slowly and rapidly, respectively. The tight-binding sites appear to be analogous to those sites with which the enzyme is able to form poly[I]-resistant complexes.This investigation was supported by funds from The National Research Council of Canada (NRC A9722).  相似文献   

6.
7.
Rifamycin AF/013, a potent inhibitor of nucleic acid polymerizing enzymes and of some hormone receptors, strongly inhibited thyroid hormone-binding to the isolated nuclear receptor. Fifty percent inhibition was obtained at AF/013 concentration of as low as 8 micrograms/ml. AF/013, however, only weakly promoted dissociation of the bound hormone from the receptor. The inhibitory action of AF/013 was competitive with respect to and reduced the receptor's affinity for the hormone.  相似文献   

8.
Oxygen enhanced the bactericidal activity of rifamycin SV to Escherichia coli K12. Anaerobically grown cells, which had a low level of superoxide dismutase, were more susceptible to the bactericidal activity than aerobically grown cells, which contained a high level of superoxide dismutase. Oxygen also enhanced the inhibition of RNA polymerase activity of rifamycin SV, when Mn2+ was used as a cofactor. Rifamycin S was reduced to rifamycin SV by NADPH catalyzed by cell-free extracts of Escherichia coli K12. These results indicate that the inhibition of bacterial growth by rifamycin SV is due to the production of active species of oxygen resulting from the oxidation-reduction cycle of rifamycin SV in the cells. The aerobic oxidation of rifamycin SV to rifamycin S was induced by metal ions, such as Mn2+, Cu2+, and Co2+. The most effective metal ion was Mn2+. In the presence of Mn2+, accompanying the consumption of 1 mol of oxygen and the oxidation of 1 mol of rifamycin SV, 1 mol of hydrogen peroxide and 1 mol of rifamycin S were formed. Superoxide was generated during the autoxidation of rifamycin SV. Superoxide dismutase inhibited the formation of rifamycin S, but scavengers for hydrogen peroxide and the hydroxyl radical did not affect the oxidation. A mechanism of Mn2+-catalyzed oxidation of rifamycin SV is proposed and its relation to bactericidal activity is discussed.  相似文献   

9.
10.
The effect of several rifamycin derivatives on poly(A) synthesis in vitro was tested using purified rat liver mitochondrial poly(A) polymerase assayed with an exogenous primer. When used at a concentration of 300 μg/ml, derivatives AF/013, PR/19, AF/AETP, M/88 and AF/ABDP completely inhibited activity corresponding to 50 μg of enzyme protein. Under similar conditions, derivatives DMAO and AF/MO failed to inhibit enzyme activity. Studies with PR/19 showed that the drug interacted directly with the enzyme molecule and did not affect the enzyme-primer complex formation. The inhibition by the drug could be reversed by increasing the substrate (ATP) concentration. It is concluded that some rifamycin derivatives can specifically inhibit template-independent nucleotide chain elongation reactions.  相似文献   

11.
12.
A transient decaribonucleotide (iRNA) is covalently linked to nascent eukaryotic DNA chains at their 5' end. Searching for the putative iRNA polymerase (primase), we detected in extracts from SV40-infected cells a DNA-dependent incorporation of UMP residues from UTP into free and DNA linked deca- or similarly sized ribonucleotides. Denatured salmon sperm DNA served as the standard template in this reaction. SV40 FIII DNA was also an effective template, SV40 FII DNA was ineffective while FI yielded mainly free decaribonucleotides. The incorporation depended on the other rNTPs and was resistant to high concentrations of alpha-amanitin and rifamycin AF/013, drugs inhibitory to RNA polymerases I, II and III. The results implicate the decaribonucleotide polymerase in the priming of nascent DNA chains and suggest that the unique size of iRNA is encoded within its primase.  相似文献   

13.
14.
DNA polymerase I is a multifaceted enzyme with one polymerizing and two exonuclease activities. Captan was previously shown to be an inhibitor of this enzyme's polymerizing activity and this report measures the effects of captan on the two exonuclease activities. When the holoenzyme was tested, captan enhanced the degradation of poly(dA-dT), T7 DNA and, to a significantly lesser extent, heat-denatured DNA. However, when the effects of captan were tested as a function of substrate concentration, the stimulatory influence was measured only at high substrate concentrations. At low concentrations of DNA, captan was inhibitory. Inhibition and enhancement each showed an ED50 of the same value (approx. 100 microM). By assaying the two exonuclease activities separately it was shown that the differential effect on the holoenzyme by captan was the result of a combined inhibition of the 3'----5' exonuclease and enhancement of the 5'----3' exonuclease. Klenow fragment with poly(dA-dT) as substrate was used to assay for 3'----5' exonuclease activity. Captan inhibited this exonuclease and the inhibition could be prevented by the addition of greater concentrations of substrate. Holoenzyme and poly(rA)-poly(dT) were used to assay for 5'----3' exonucleolysis, which was enhanced at higher concentrations of substrate in the presence of captan.  相似文献   

15.
The physical and biochemical properties of two pairs of synthetic DNA template-primers were investigated. The copolymer poly(dA-dU) . poly(dA-dU) and the homopolymer duplex poly(dA). poly(dU) were characterized by a lower Tm and by a higher buoyant density value than the respective thymine polynucleotides poly(dA-dT) . poly(dA-dT) and poly(dA) . poly(dT). The polymerizing and the primer terminus adding reactions of a homogenous E. coli DNA polymerase I preparation, as measured by incorporation of [3H]dAMP into the acid-insoluble fraction, were significantly poorer with uracil-containing template-primers than with thymine templates. Moreover, the uracil-containing polynucleotides inhibited the polymerizing activity of DNA polymerase I to a greater extent than the thymine polynucleotides, when the enzymatic activity was investigated with a dATP/dTTP/dUTP-free incorporation system making use of poly(dI-dC) . poly(dI-dC) as the template-primer.  相似文献   

16.
17.
Although unmodified poly C and unmodified ribosomal RNA showed little ( < 20%) or no inhibition of 6–7S cytoplasmic, 3–4S cytoplasmic and 3–4S chromatin-associated DNA-directed DNA polymerases and of RNase sensitive endogenous DNA polymerase and DNA-directed DNA polymerase activity associated with a particulate material (p = 1.16 ? 1.18 g/ml) from Burkitt cells the thiolated poly C and thiolated RNA were strongly inhibitory (70–97%). Moreover, the thiolated nucleic acids were more inhibitory to 6–7S enzyme than to 3–4S enzyme. Thiolation of nucleic acids thus appears to be a potentially important procedure for the development of agents which may be selective against certain polymerases.  相似文献   

18.
19.
K M Rose  H P Morris  S T Jacob 《Biochemistry》1975,14(5):1025-1032
Poly(A) polymerase (EC 2.7.7.19) solubilized from mitochondria of a poorly differentiated rat tumor, Morris hepatoma 3924A, was purified more than 1000-fold by successive column chromatography on phosphocellulose, DEAE-Sephadex, and hydroxylapatite. Purified enzyme catalyzed the incorporation of ATP into poly(A) only upon addition of an exogenous primer. Of several primers tested, synthetic poly(A) was the most effective. The enzyme utilized mitochondrial RNA as a primer at least five times as efficiently as nuclear RNA. The enzyme required Mn2+, and had a pH optimum of 7.8-8.2. The enzyme utilized ATP exclusively as a substrate; the calculated K-m for ATP was 28 muM. The polymerization reaction was not inhibited by RNase, ethidium bromide, distamycin, or alpha-amanitin. The reaction was sensitive to O-n-octyloxime of 3-formylrifamycin SV (AF/013). As estimated from glycerol gradient centrifugation and acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the molecular weight of the enzyme was 60,000. The product was covalently linked to the polynucleotide primer and the average length of the poly(A) formed was 600 nucleotides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号