首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Plant male reproductive development is a complex biological process, but the underlying mechanism is not well understood. Here, we characterized a rice (Oryza sativa L.) male sterile mutant. Based on map‐based cloning and sequence analysis, we identified a 1,459‐bp deletion in an adenosine triphosphate (ATP)‐binding cassette (ABC) transporter gene, OsABCG15, causing abnormal anthers and male sterility. Therefore, we named this mutant osabcg15. Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis II stage) to stage 10 (late microspore stage). Two genes CYP704B2 and WDA1, involved in the biosynthesis of very‐long‐chain fatty acids for the establishment of the anther cuticle and pollen exine, were downregulated in osabcg15 mutant, suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules. Consistently, histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration, leading to rapid degredation of young microspores. The results suggest that OsABCG15 plays a critical role in exine formation and pollen development, similar to the homologous gene of AtABCG26 in Arabidopsis. This work is helpful to understand the regulatory network in rice anther development.  相似文献   

3.
4.
5.
With improved staining and chromosome preparation techniques, meiosis of pollen mother cells (PMCs) and male gametophyte development in autotetraploid cucumber (Cucumis sativus L.) was studied to understand the correlation between chromosomes behaviour and fertility. Various chromosome configurations, e.g. multivalent, quadrivalents, trivalents, bivalents and univalents were observed in most PMCs at metaphase I. Lagging chromosomes were frequently observed at anaphase in both meiotic divisions. In addition, chromosomes segregations were not synchronous and equal in some PMCs during anaphase II and telophase II. Dyads, triads, tetrads with micronuclei and polyads were observed at tetrad stage, and the frequencies of normal tetrad with four microcytes were only 55.4 %. The frequency of abnormal behaviour in each stage of meiosis was counted, and the average value was 37.2 %. The normal meiotic process could be accomplished to form the microspore tetrads via simultaneous cytokinesis. Most microspores could develop into fertile gametophytes with 2 cells and 3 germ pores through the following stages: single-nucleus early stage, single-nucleus late stage and 2-celled stage. The frequency of abnormalities was low during the process of male gametophyte development. The germination rate of pollen grains was 46.9 %. These results suggested that abnormal meiosis in PMCs was the reason for low pollen fertility in the autotetraploid cucumber.  相似文献   

6.
In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin‐celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6‐1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)‐dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6‐1 during male meiosis and pollen mitosis I using fluorescent MT‐markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6‐1 mutants as a valuable tool for the investigation of augmin‐dependent MT nucleation and dynamics in plant cells.  相似文献   

7.
In plants, normal anther and pollen development involves many important biological events and complex molecular regulatory coordination. Understanding gene regulatory relationships during male reproductive development is essential for fundamental biology and crop breeding. In this work, we developed a rice gene co‐expression network for anther development (RiceAntherNet) that allows prediction of gene regulatory relationships during pollen development. RiceAntherNet was generated from 57 rice anther tissue microarrays across all developmental stages. The microarray datasets from nine rice male sterile mutants, including msp1‐4, ostdl1a, gamyb‐2, tip2, udt1‐1, tdr, eat1‐1, ptc1 and mads3‐4, were used to explore and test the network. Among the changed genes, three clades showing differential expression patterns were constructed to identify genes associated with pollen formation. Many of these have known roles in pollen development, for example, seven genes in Clade 1 (OsABCG15, OsLAP5, OsLAP6, DPW, CYP703A3, OsNP1 and OsCP1) are involved in rice pollen wall formation. Furthermore, Clade 1 contained 12 genes whose predicted orthologs in Arabidopsis have been reported as key during pollen development and may play similar roles in rice. Genes in Clade 2 are expressed earlier than Clade 1 (anther stages 2–9), while genes in Clade 3 are expressed later (stages 10–12). RiceAntherNet serves as a valuable tool for identifying novel genes during plant anther and pollen development. A website is provided ( https://www.cpib.ac.uk/anther/riceindex.html ) to present the expression profiles for gene characterization. This will assist in determining the key relationships between genes, thus enabling characterization of critical genes associated with anther and pollen regulatory networks.  相似文献   

8.
The development of male gametophyte and female gametophyte within a floret of rye (Secale cereale L.) was examined. Generally, meiosis in microsporocytes and in megasporocytes occurs simultaneously in most florets, but the period from zygotene to tetrad meiosis in the megasporocyte progresses more slowly than that in the microsporocyte. When the female gametophyte has one nucleus and no vacuoles, the male gametophyte has a single, eccentric nucleus. By the time the female gametophyte develops to the vacuolated one-, two-, four-, and eight-nucleate stages and to the growth and differentiation of the egg apparatus stage, the male gametophyte reaches the two-celled pollen stage. As the female gametophyte matures, the male gametophyte also reaches maturity. The duration of male gametophyte development from microspore mother cell and the duration of female gametophyte development from megaspore mother cell are the same in most florets. The relationship between sexual development of cross-pollinated rye is similar to that of self-pollinated wheat (Triticum aestivum L.). It seems that the relationship is not related to the breeding system.  相似文献   

9.
Female meiosis in Arabidopsis has been analysed cytogenetically using an adaptation of a technique previously applied to male meiosis. Meiotic progression was closely correlated with stages of floral development, including the length and morphology of the gynoecium. Meiosis in embryo sac mother cells (EMCs) occurs later in development than male meiosis, in gynoecia that range in size between 0.3 and 0.8 mm. The earliest stages in EMCs coincide with the second division to tetrad stages in pollen mother cells. However, the details of meiotic chromosome behaviour in EMCs correspond closely to the observations we have previously made in male meiosis. In addition, BrdU labelling coupled with an immunolocalisation detection system was used to mark the S phase in cells preceding their entry into prophase I. These techniques allow female meiotic stages of Arabidopsis to be analysed in detail, from the S-phase through to the tetrad stage, and are shown to be equally applicable to the analysis of female meiosis in meiotic mutants. Received: 3 April 2000 / Revision accepted: 2 August 2000  相似文献   

10.
11.
Investigating the tolerance of plant reproductive systems to environmental changes has become a research priority under current climate change scenarios. Successful plant conservation requires knowledge of plant reproductive biology, particularly the meiotic characteristics of planted species. Meiosis, as part of microsporogenesis, is a critical plant developmental stage controlling future pollen quality. Meiosis in a Siberian fir (Abies sibirica) plantation, established in the Forest Arboretum of the Sukachev Institute, Russia, was studied from 2002 to 2004. The microsporogenesis pattern found for the Siberian fir appeared to be largely similar to that exhibited by other conifer species. Meiosis in the Siberian fir has the following characteristics: asynchrony, rapid progression of telophases I and II, and parallel and linear spindle arrangements at different meiosis II stages. General and specific meiosis irregularities were recorded at each stage. Some specific features of meiosis and the specific development of some irregularities were revealed. Pollen development analysis showed that irregular pollen grains made up less than 1% of all grains. The specific features of meiosis identified in fir trees growing in the Arboretum indicated low resistance of male reproductive structures to climatic changes and might account for high fir pollen sterility in this new environment.  相似文献   

12.
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)‐sensing mechanism plays an essential role in the Pi‐signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we discovered that the down‐regulation of OsSPX1 caused reduction of seed‐setting rate and filled grain number. Through examination of anthers and pollens of the transgenic and wild‐type plants by microscopy, we found that the antisense of OsSPX1 gene led to semi‐male sterility, with lacking of mature pollen grains and phenotypes with a disordered surface of anthers and pollens. We further conducted rice whole‐genome GeneChip analysis to elucidate the possible molecular mechanism underlying why the down‐regulation of OsSPX1 caused deficiencies in anthers and pollens and lower seed‐setting rate in rice. The down‐regulation of OsSPX1 significantly affected expression of genes involved in carbohydrate metabolism and sugar transport, anther development, cell cycle, etc. These genes may be related to pollen fertility and male gametophyte development. Our study demonstrated that down‐regulation of OsSPX1 disrupted rice normal anther and pollen development by affecting carbohydrate metabolism and sugar transport, leading to semi‐male sterility, and ultimately resulted in low seed‐setting rate and grain yield.  相似文献   

13.
14.
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two‐hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss‐of‐function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro‐nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi‐OsRAD51D RNAi‐knock‐down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi‐OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.  相似文献   

15.
To elucidate the photosynthetic physiological characteristics and the physiological inherited traits of rice (Oryza sativa L.) hybrids and their parents, physiological indices of photosynthetic CO2 exchange and chlorophyll fluorescence parameters were measured in leaves of the maize phosphoenolpyruvate carboxylase (PEPC) transgenic rice as the male parent, sp. japonica rice cv. 9516 as the female parent, and the stable JAAS45 pollen line. The results revealed that the PEPC gene could be stably inherited and trans- ferred from the male parent to the JAAS45 pollen line. Moreover, the JAAS45 pollen line exhibited high levels of PEPC activity, manifesting higher saturated photosynthetic rates, photosynthetic apparent quantum yield (AQY), photochemical efficiency of photosystem II and photochemical and non-photochemical quenching, which indicated that the JAAS45 pollen line has a high tolerance to photo-inhibition/photooxidation under strong light and high temperature. Furthermore, JAAS45 was confirmed to still be a C3 plant by δ^13C carbon isotope determination and was demonstrated to have a limited photosynthetic C4 microcycle by feeding with exogenous C4 primary products, such as oxaloacetate or malate, or phosphoenolpyruvate. The present study explains the physiological inherited properties of PEPC transgenic rice and provides an expectation for the integration of traditional breeding and biological technology.  相似文献   

16.
Poly(ADP-ribose) polymerases (PARPs), which transfer either monomer or polymer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) onto target proteins, are required for multiple processes in DNA damage repair, cell cycle, development, and abiotic stress in animals and plants. Here, the uncharacterized rice (Oryza sativa) OsPARP1, which has been predicted to have two alternative OsPARP1 mRNA splicing variants, OsPARP1.1 and OsPARP1.2, was investigated. However, bimolecular fluorescence complementation showed that only OsPARP1.1 interacted with OsPARP3 paralog, suggesting that OsPARP1.1 is a functional protein in rice. OsPARP1 was preferentially expressed in the stamen primordial and pollen grain of mature stamen during flower development. The osparp1 mutant and CRISPR plants were delayed in germination, indicating that defective DNA repair machinery impairs early seed germination. The mutant displayed a normal phenotype during vegetative growth but had a lower seed-setting rate than wild-type plants under normal conditions. Chromosome bridges and DNA fragmentations were detected in male meiocytes at anaphase I to prophase II. After meiosis II, malformed tetrads or tetrads with micronuclei were formed. Meanwhile, the abnormality was also found in embryo sac development. Collectively, these results suggest that OsPARP1 plays an important role in mediating response to DNA damage and gametophyte development, crucial for rice yield in the natural environment.  相似文献   

17.
Male reproductive development of rice (Oryza sativa L.) is very sensitive to drought. A brief, transitory episode of water stress during meiosis in pollen mother cells of rice grown under controlled environmental conditions induced pollen sterility. Anthers containing sterile pollen were smaller, thinner, and often deformed compared to normal anthers of well-watered plants. Only about 20% of the fully developed florets in stressed plants produced grains, compared to 90% in well-watered controls. Water stress treatments after meiosis were progressively less damaging. Levels of starch and sugars and activities of key enzymes involved in sucrose cleavage and starch synthesis were analyzed in anthers collected at various developmental stages from plants briefly stressed during meiosis and then re-watered. Normal starch accumulation during pollen development was strongly inhibited in stress-affected anthers. During the period of stress, both reducing and non-reducing sugars accumulated in anthers. After the relief of stress, reducing sugar levels fell somewhat below those in controls, but levels of non-reducing sugars remained higher than in controls. Activities of acid invertase and soluble starch synthase in stressed anthers were lower than in controls at comparable stages throughout development, during as well as after stress. Stress had no immediate effect on ADP-glucose pyrophosphorylase activity, but had an inhibitory aftereffect throughout post-stress development. Sucrose synthase activity, which was, relatively speaking, much lower than acid invertase activity, was only slightly suppressed by stress. The results show that it is unlikely that pollen sterility, or the attendant inhibition of starch accumulation, in water-stressed rice plants are caused by carbohydrate starvation per se. Instead, an impairment of enzymes of sugar metabolism and starch synthesis may be among the potential causes of this failure.  相似文献   

18.
19.
Wan C  Li S  Wen L  Kong J  Wang K  Zhu Y 《Plant cell reports》2007,26(3):373-382
One of the cytoplasmic male sterility (CMS) types used for hybrid rice (Oryza sativa L.) production in China is the Honglian (HL)-CMS. Previous studies suggested that pollen abortion of the sterile plants was resulted from a special programmed cell death (PCD) program started at meiosis in the microspores. To elucidate the molecular basis of the pollen abortion, we compared the biochemical and physiological properties such as content of reactive oxygen species (ROS), ATP, NADH, total glutathione and ascorbate acid, the activities of dehydroascrbate reductase, glutathione reductase, ascorbate peroxides and superoxide dismutase, and the integrity of mitochondrial genome DNA isolated from an HL-CMS line, Yuetai A and its maintainer line, Yuetai B. Our results indicated that the mitochondria of the HL-CMS line suffered from a serious oxidative stress during microspores development. Oxidative stress induced by abnormal increased ROS at meiosis stage resulted in the depletion of ATP and NADH, and the degradation of mitochondrial genomic DNA. This suggests that the presence of redox signal originated in mitochondria affects the rest of the cell. Therefore, it is possible that the abortion of premature microspores in HL-CMS line is induced by the chronic oxidative stress in mitochondria in the early stage of pollen development.  相似文献   

20.
Summary The behavior of organelle nuclei during maturation of the male gametes ofLilium longiflorum andPelargonium zonale was examined by fluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI) and Southern hybridization. The organelle nuclei in both generative and vegetative cells inL. longiflorum were preferentially degraded during the maturation of the male gametes. In the mature pollen grains ofL. longiflorum, there were absolutely no organelle nuclei visible in the cytoplasm of the generative cells. In the vegetative cells, almost all the organelle nuclei were degraded. However, in contrast to the situation in generative cells, the last vestiges of organelle nuclei in vegetative cells did not disappear completely. They remained in evidence in the vegetative cells during germination of the pollen tubes. InP. zonale, however, no evidence of degradation of organelle nuclei was ever observed. As a result, a very large number of organelle nuclei remained in the sperm cells during maturation of the pollen grains. When the total DNA isolated from the pollen or pollen tubes was analyzed by Southern hybridization with a probe that contained therbc L gene, for detection of the plastid DNA and a probe that contained thecox I gene, for detection of the mitochondrial DNA, the same results were obtained. Therefore, the maternal inheritance of the organelle genes inL. longiflorum is caused by the degradation of the organelle DNA in the generative cells while the biparental inheritance of the organelle genes inP. zonale is the result of the preservation of the organelle DNA in the generative and sperm cells. To characterize the degradation of the organelle nuclei, nucleolytic activities in mature pollen were analyzed by an in situ assay on an SDS-DNA-gel after electrophoresis. The results revealed that a 40kDa Ca2+-dependent nuclease and a 23 kDa Zn2+ -dependent nuclease were present specifically among the pollen proteins ofL. longiflorum. By contrast, no nucleolytic activity was detected in a similar analysis of pollen proteins ofP. zonale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号