首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of rabbit skeletal muscle glycogen synthase by a cyclic nucleotide and Ca2+-independent protein kinase, PC0.7, caused the enzyme to be a better substrate for phosphorylation by another cyclic nucleotide and Ca2+-independent protein kinase, FA/GSK-3. In contrast, phosphorylation by the combination of FA/GSK-3 and cyclic AMP-dependent protein kinase led to less phosphorylation than predicted from the individual actions of the protein kinases. These results are explained in part by the existence of cooperative interactions among the phosphorylation sites of glycogen synthase. Phosphorylation by FA/GSK-3 also correlated with a reduction in the electrophoretic mobility, in the presence of sodium dodecyl sulfate, of the glycogen synthase subunit from an apparent molecular weight of 85,000-86,000 to values of 88,000 and ultimately 90,000. The synergistic phosphorylation by PC0.7 and FA/GSK-3 was associated with an increased formation of the species of reduced electrophoretic mobility. The effects on subunit mobility were also reflected in the behavior of a larger phosphorylated CNBr fragment of glycogen synthase, CB-2, which gave apparent molecular weights of 22,000-27,000 depending on its phosphorylation state.  相似文献   

2.
The mechanism for synergistic phosphorylation by glycogen synthase kinase 3 (GSK-3) and casein kinase II was studied using a synthetic peptide which contains the sequence of a potentially important proline/serine-rich regulatory region of rabbit muscle glycogen synthase. The peptide, Ac-PRPAS(3a)VPPS(3b)PSLS(3c)RHSS(4)PHQS(5) EDEEEP-amide, has five known phosphorylation sites of the native enzyme designated sites 3a, 3b, 3c, 4, and 5, which are spaced every fourth residue. The peptide was phosphorylated specifically at site 5 by casein kinase II with an apparent Km of 23 microM, but it was not phosphorylated by GSK-3. However, after initial phosphorylation of site 5 by casein kinase II, the peptide became an effective substrate for GSK-3 with an apparent Km of 2 microM. GSK-3 introduced up to four phosphates and appeared to catalyze the sequential modification of sites 4, 3c, 3b, and 3a, respectively. The results can be explained if GSK-3 recognizes the sequence -SXXXS(P). Phosphorylation of site 5 by casein kinase II creates this recognition site. Thereafter, each successive phosphorylation introduced by GSK-3 generates a new recognition site. The results provide a molecular basis to explain the synergistic action of casein kinase II and GSK-3 that is also observed with native glycogen synthase. In addition, this investigation emphasizes how protein recognition sites in some cellular targets may have to be formed post-translationally.  相似文献   

3.
Purified rabbit liver glycogen synthase was found to be a substrate for six different protein kinases: (i) cyclic AMP-dependent protein kinase, (ii) two Ca2+-stimulated protein kinases, phosphorylase kinase (from muscle) and a calmodulin-dependent glycogen synthase kinase, and (iii) three members of a Ca2+ and cyclic nucleotide independent class, PC0.7, FA/GSK-3, and casein kinase-1. Greatest inactivation accompanied phosphorylation by cyclic AMP-dependent protein kinase (to 0.5-0.7 phosphate/subunit, +/- glucose-6-P activity ratio reduced from approximately 1 to 0.6) or FA/GSK-3 (to approximately 1 phosphate/subunit, activity ratio, 0.46). Phosphorylation by the combination FA/GSK-3 plus PC0.7 was synergistic, and more extensive inactivation was achieved. The phosphorylation reactions just described caused significant reductions in the Vmax of the glycogen synthase with little effect on the S0.5 (substrate concentration corresponding to Vmax/2). Phosphorylase kinase achieved a lesser inactivation, to an activity ratio of 0.75 at 0.6 phosphate/subunit. PC0.7 acting alone, casein kinase-1, and the calmodulin-dependent protein kinase did not cause inactivation of liver glycogen synthase with the conditions used. Analysis of CNBr fragments of phosphorylated glycogen synthase indicated that the phosphate was distributed primarily between two polypeptides, with apparent Mr = 12,300 (CB-I) and 16,000-17,000 (CB-II). PC0.7 and casein kinase-1 displayed a decided specificity for CB-II, and the calmodulin-dependent protein kinase was specific for CB-I. The other protein kinases were able, to some extent, to introduce phosphate into both CB-I and CB-II. Studies using limited proteolysis indicated that CB-II was located at a terminal region of the subunit. CB-I contains a minimum of one phosphorylation site and CB-II at least three sites. Liver glycogen synthase is therefore potentially subject to the same type of multisite regulation as skeletal muscle glycogen synthase although the muscle and liver enzymes display significant differences in both structural and kinetic properties.  相似文献   

4.
The known amino acid sequences at the two sites on phosphorylase kinase that are phosphorylated by cyclic AMP-dependent protein kinase were extended. The sequences of 42 amino acids around the phosphorylation site on the alpha-subunit and of 14 amino acids around the phosphorylation site on the beta-subunit were shown to be: alpha-subunit Phe-Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly-Gly-His-Ser-Leu-Gly-Ala-Asp-Leu-Met-Ser-Pro-Ser-Phe-Leu-Ser-Pro-Gly-Thr-Ser-Val-Phe(Ser,Pro,Gly)His-Thr-Ser-Lys; beta-subunit, Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-VALIle-Tyr-Glu-Pro-Leu-Lys. The sites on histone H2B which are phosphorylated by cyclic AMP-dependent protein kinase in vitro were identified as serine-36 and serine-32. The amino acid sequence in this region is: Lys-Lys-Arg-Lys-Arg-Ser32(P)-Arg-Lys-Glu-Ser36(P)-Tyr-Ser-Val-Tyr-Val- [Iwai, K., Ishikawa, K. & Hayashi, H. (1970) Nature (London) 226, 1056-1058]. Serine-36 was phosphorylated at 50% of the rate at which the beta-subunit of phosphorylase kinase was phosphorylated, and it was phosphorylated 6-7-fold more rapidly than was serine-32. The amino acid sequences when compared with those at the phosphorylation sites of other physiological substrates suggest that the presence of two adjacent basic amino acids on the N-terminal side of the susceptible serine residue may be critical for specific substrate recognition in vivo.  相似文献   

5.
In addition to acetyl-CoA carboxylase and HMG-CoA reductase, the AMP-activated protein kinase phosphorylates glycogen synthase, phosphorylase kinase, hormone-sensitive lipase and casein. A number of other substrates for the cyclic AMP-dependent protein kinase, e.g., L-pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, are not phosphorylated at significant rates. Examination of the sites phosphorylated on acetyl-CoA carboxylase, hormone-sensitive lipase, glycogen synthase and phosphorylase kinase suggests a consensus recognition sequence in which the serine residue phosphorylated by the AMP-activated protein kinase has a hydrophobic residue on the N-terminal side (i.e., at -1) and at least one arginine residue at -2, -3 or -4. Substrates for cyclic AMP-dependent protein kinase which lack the hydrophobic residue at -1 are not substrates for the AMP-activated protein kinase.  相似文献   

6.
Recognition of substrates by the protein kinase glycogen synthase kinase 3 (GSK-3) usually requires prior phosphorylation of the substrate. Using a peptide based on the glycogen synthase sequence PRPAS(3a)VPPS (3b)PSLS(3c)RHSS(4)PHQS(5)EDEEEP (where the numbers in parentheses denote sites of phosphorylation), we showed previously that phosphorylation of site 5 by casein kinase II was necessary for GSK-3 to phosphorylate the peptide at sites 3a, 3b, 3c, and 4 (Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W., and Roach, P. J. (1987) J. Biol. Chem. 262, 14042-14048). In the present study, variant peptides were synthesized in which sites 3a, 3b, 3c, and 4 were individually replaced by Ala residues (denoted Ala-3c, etc.). All of the variant peptides were substrates for casein kinase II. The peptide Ala-4,Ser(P)-5 was not a substrate for GSK-3 confirming the minimal recognition sequence for the protein kinase as -SXXXS(P)-. The peptides Ala-3c,Ser(P)-5, Ala-3b,Ser(P)-5, and Ala-3a,Ser(P)-5, however, were all good substrates for GSK-3 with apparent Km values in the range 3-6 microns, comparable with that of the parent peptide. GSK-3 could introduce 1, 2, and 3 phosphates, respectively, into these substrates, always COOH-terminal to the substituted Ala residue. Ala-4,Ser(P)-5 and Ala-3c,Ser(P)-4,Ser(P)-5 were competitive inhibitors for phosphorylation of the parent peptide, with Ki values of 2 and 5 microns, respectively. The data suggest (i) that GSK-3 recognizes serines in the motif -SXXXS(P)-, and (ii) that multiple phosphorylation of the peptide substrate has an obligate order, with the sequential formation of new recognition sequences.  相似文献   

7.
Phosphate groups as substrate determinants for casein kinase I action   总被引:22,自引:0,他引:22  
Phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase has been shown to enhance subsequent phosphorylation by casein kinase I (Flotow, H., and Roach, P. J. (1989) J. Biol. Chem. 264, 9126-9128). In the present study, synthetic peptides based on the sequences of the four phosphorylated regions in muscle glycogen synthase were used to probe the role of substrate phosphorylation in casein kinase I action. With all four peptides, prior phosphorylation significantly stimulated phosphorylation by casein kinase I. A series of peptides was synthesized based on the NH2-terminal glycogen synthase sequence PLSRTLS7VSS10LPGL, in which phosphorylation at Ser7 is required for modification of Ser10 by casein kinase I. The spacing between the P-Ser and the acceptor Ser was varied to have 1, 2, or 3 intervening residues. The peptide with a 2-residue spacing (-S(P)-X-X-S-) was by far the best casein kinase I substrate. When the P-Ser residue at Ser7 was replaced with P-Thr, the resulting peptide was still a casein kinase I substrate. However, substitution of Asp or Glu residues at Ser7 led to peptides that were not phosphorylated by casein kinase I. Phosphorylation of one of the other peptides showed that Thr could also be the phosphate acceptor. From these results, we propose that there are substrates for casein kinase I for which prior phosphorylation is a critical determinant of protein kinase action. In these instances, an important recognition motif for casein kinase I appears to be -S(P)/T(P)-Xn-S/T- with n = 2 much more effective than n = 1 or n = 3. Thus, casein kinase I may be involved in hierarchal substrate phosphorylation schemes in which its activity is controlled by the phosphorylation state of its substrates.  相似文献   

8.
The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

9.
Microtubule-associated protein tau from Alzheimer brain has been shown to be phosphorylated at several ser/thr-pro and ser/thr-X sites (Hasegawa, M. et al., J. Biol. Chem, 267, 17047–17054, 1992). Several proline-dependent protein kinases (PDPKs) (MAP kinase, cdc2 kinase, glycogen synthase kinase-3, tubulin-activated protein kinase, and 40 kDa neurofilament kinase) are implicated in the phosphorylation of the ser-thr-pro sites. The identity of the kinase(s) that phosphorylate that ser/thr-X sites are unknown. To identify the latter kinase(s) we have compared the phosphorylation of bovine tau by several brain protein kinases. Stoichiometric phosphorylation of tau was achieved by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, protein kinase C and cyclic AMP-dependent protein kinase, but not with casein kinase-2 or phosphorylase kinase. Casein kinase-1 and calmodulin-dependent protein kinase II were the best tau kinases, with greater than 4 mol and 3 mol32P incorporated, respectively, into each mol of tau. With the sequential addition of these two kinases,32P incorporation approached 6 mol. Peptide mapping revealed that the different kinases largely phosphorylate different sites on tau. After phosphorylation by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, cyclic AMP-dependent protein kinase and casein kinase-2, the mobility of tau isoforms as detected by SDS-PAGE was decreased. Protein kinase C phosphorylation did not produce such a mobility shift. Our results suggest that one or more of the kinases studied here may participate in the hyperphosphorylation of tau in Alzheimer disease. Such phosphorylation may serve to modulate the activaties of other tau kinases such as the PDPKs.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium-phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - Gr kinase calcium/calmodulin-dependent protein kinase from rat cerebellum - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

10.
DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000) is a major endogenous cytosolic substrate for dopamine- and cyclic AMP-stimulated protein phosphorylation in neurons of the basal ganglia of mammalian brain. It shares many properties with phosphatase inhibitor 1, a substrate for cyclic AMP-dependent protein kinase, and with G-substrate, a substrate for cyclic GMP-dependent protein kinase. We have, therefore, undertaken an analysis of the amino acid sequence around the site at which purified DARPP-32 is phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase. The results indicate that DARPP-32 is phosphorylated at a single threonine residue contained in the sequence Arg-Arg-Arg-Pro-Thr(P)-Pro-Ala-Met-Leu-Phe-Arg. This sequence was obtained by automated solid phase sequencing of two overlapping tryptic phosphopeptides and one overlapping chymotryptic phosphopeptide which were purified by reverse-phase high-performance liquid chromatography. A 9-amino acid sequence containing the phosphorylatable threonine residue in DARPP-32 shares 8 identical residues with a sequence containing the phosphorylatable threonine residue in phosphatase inhibitor 1, and shares 5 identical residues with the two identical sequences surrounding the 2 phosphorylatable threonine residues in G-substrate. These observations support the view that DARPP-32, inhibitor 1, and G-substrate are members of a family of regulatory proteins which are involved in the control of protein phosphatase activity by both cyclic AMP and cyclic GMP, but which differ in their cellular and tissue distributions.  相似文献   

11.
The changes in the activities of 17 aminoacyl-tRNA synthetases induced by phosphorylation [1] were reversed by the action of cyclic AMP in preparations from both uterus and liver. Cyclic AMP also inhibited the phosphorylation of aminoacyl-tRNA synthetase protein by endogenous non-cyclic AMP-dependent protein kinase and [gamma-32P]ATP. The effect was not due to a stimulation of phosphoaminoacyl-tRNA synthetase phosphatase or to an influence of cyclic AMP on aminoacyl-tRNA synthetases. The activity of phosphoaminoacyl-tRNA synthetase phosphatase was increased by treatment with endogenous cyclic AMP-dependent protein kinase, ATP and cyclic AMP. Affinity chromatography of the 32P-labeled phosphorylated phosphosynthetase phosphatase protein followed by gel electrophoresis showed that the activated phosphatase was phosphorylated. In the uterus, the changes in 17 aminoacyl-tRNA synthetase activities observed 5 min after dibutyryl cyclic AMP administration to ovariectomized mice were similar to those observed after 17beta-oestradiol treatment, whereas in the liver the changes in these activities were the opposite to those found after treatment with 17beta-oestradiol. A mechanism for the regulation of the 17 aminoacyl-tRNA synthetase activities is proposed, which suggests that the synthetase activities inhibited (group I) or stimulated (group II) by phosphorylation with a non-cyclic AMP-dependent aminoacyl-tRNA synthetase kinase are reactivated (group I) or inhibited (group II), respectively, by the action of a cyclic AMP-dependent phosphatase kinase through the increased activity of phosphorylated phosphoaminoacyl-tRNA synthetase phosphatase.  相似文献   

12.
A heat-stable protein inhibitor of the hydroxymethylglutaryl-CoA reductase phosphatase 2A activity has been identified and purified to homogeneity, as judged by polyacrylamide gel electrophoresis. The apparent molecular mass was 20,000 Da. The protein lost its inhibitory properties when incubated with trypsin or treated with ethanol. The inhibitor protein does not inhibit type 1 phosphatase when either phosphorylase or hydroxymethylglutaryl-CoA reductase is the substrate. In contrast, this protein inhibitor inhibits the rat liver type 2A phosphatase activity when hydroxymethylglutaryl-CoA reductase is the substrate but not when phosphorylase a is the substrate. The inhibitor protein is not activated by incubation with ATP and cyclic AMP-dependent protein kinase and it is not phosphorylated by glycogen synthase kinase-3. These results, together with those of the kinetic experiments, suggest that the reductase phosphatase inhibitor is distinct from protein phosphatase inhibitor-1 and inhibitor-2.  相似文献   

13.
Fructose-1,6-bisphosphatase from rat liver was phosphorylated with cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Brief exposure of the 32P-labeled enzyme to trypsin removed all radioactivity from the enzyme core and produced a single-labeled peptide. The partial sequence of the 17-amino acid peptide was found to be Ser-Arg-Pro-Ser(P)-Leu-Pro-Leu-Pro-(Ser2, Glx2, Pro2, Leu, Arg2). The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of native fructose bisphosphatase were compared with those of rat liver type L pyruvate kinase where the sequence around the phosphoserine is known (Arg-Arg-Ala-Ser(P)-Val; Hjelmquist, G., Anderson, J., Edlund, B., and Engstrom, L. (1974) Biochem. Biophys. Res. Commun. 61, 559-563). The Km for pyruvate kinase (17 microM) was less than that for fructose bisphosphatase (58 microM); the Vmax was about 3-fold greater with pyruvate kinase as substrate. The relationship between the rates of phosphorylation of these native substrates and the amino acid sequences surrounding the phosphorylated sites is discussed.  相似文献   

14.
Several polycations were tested for their abilities to inhibit the activity of glycogen synthase kinase 3 (GSK-3). L-Polylysine was the most powerful inhibitor of GSK-3 with half-maximal inhibition of glycogen synthase phosphorylation occurring at approx. 100 nM. D-Polylysine and histone H1 were also inhibitory, but the concentration dependence was complex, and DL-polylysine was the least effective inhibitor. Spermine caused about 50% inhibition of GSK-3 at 0.7 mM and 70% inhibition at 4 mM. Inhibition of GSK-3 by L-polylysine could be blocked or reversed by heparin. A heat-stable polycation antagonist isolated from swine kidney cortex also blocked the inhibitory effect of L-polylysine on GSK-3 and blocked histone H1 stimulation of protein phosphatase 2A activity. Under the conditions tested, L-polylysine also inhibited GSK-3 catalyzed phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase and a 63 kDa brain protein, but only slightly inhibited phosphorylation of inhibitor 2 or proteolytic fragments of glycogen synthase that contain site 3 (a + b + c). L-Polylysine at a concentration (200 nM) that caused nearly complete inhibition of GSK-3 stimulated casein kinase I and casein kinase II, but had virtually no effect on the catalytic subunit of cAMP-dependent protein kinase. These results suggest that polycations can be useful in controlling GSK-3 activity. Polycations have the potential to decrease the phosphorylation state of glycogen synthase at site 3, both by inhibiting GKS-3 as shown in this study and by stimulating the phosphatase reaction as shown previously (Pelech, S. and Cohen, P. (1985) Eur. J. Biochem. 148, 245-251).  相似文献   

15.
G-substrate is a protein present in cerebellum which is a major endogenous substrate for cyclic GMP-dependent protein kinase, and one of the few known proteins phosphorylated more effectively by cyclic GMP-dependent protein kinase than by cyclic AMP-dependent protein kinase. G-substrate has been shown to be phosphorylated on two threonine residues, and the amino acid sequences surrounding these sites, which correspond to about 30% of the primary structure, are: Leu-Asn-Val-Glu-Ser-Asp-Gln-Lys-Lys-Pro-Arg-Arg-Lys-Asp-Thr(P)-Pro-Ala-Leu-His- Ile-Pro-Pro-Phe-Ile-Ser-Gly-Val-Ile-Ser-Gln-Asn SITE 1 Leu-His-Asn-Thr-Asp-Leu-Glu-Gln-Gln-Lys-Pro-Arg-Arg-Lys-Asp-Thr(P)-Pro-Ala-Leu- His-Thr-Ser-Pro-Phe-Gln-Ser-Gly-Val-Arg SITE 2 The amino acid sequences surrounding the phosphorylated residues show 18 identities over a sequence of 26 residues, and suggest that G-substrate contains an internal gene duplication. Site-1 appears to be located 17 residues from the COOH terminus of the protein. Site 1 and site 2 are phosphorylated at similar rates by cyclic GMP-dependent protein kinase. In contrast, cyclic AMP-dependent protein kinase phosphorylates site 1 4-fold more rapidly than site 2. A decapeptide sequence surrounding the phosphothreonine residues in G-substrate shows 5 identities with that surrounding the phosphothreonine residue in protein phosphatase inhibitor 1. Inhibitor 1, a specific substrate for cyclic AMP-dependent protein kinase, also resembles G-substrate in its physical properties. The possible function of G-substrate and the molecular specificities of cyclic AMP-dependent protein kinase and cyclic GMP-dependent protein kinase are discussed in the light of these results.  相似文献   

16.
Glycogen synthase kinase was isolated from rat skeletal muscle. This kinase, which is cyclic nucleotide-independent and calcium-independent, was separated from phosphorylase kinase, cyclic AMP-dependent protein kinase and phosvitin kinase by phosphocellulose chromatography. Gel filtration on Sephadex G-100 resolved the glycogen synthase kinase into two fractions with apparent molecular weights of 68 000 (peak I) and 52 000 (peak II). This step also separated glycogen synthase kinase from the catalytic subunit of the cyclic AMP-dependent protein kinase, which had an apparent molecular weight of 39 000. Peak II glycogen synthase kinase activity was not affected by the addition of calcium, EGTA or a number of cyclic nucleotides. In addition to ATP, dATP would serve as the phosphate donor. Other trinucleotides tested were either poor or ineffective substrates. Activity was about 5-fold greater with Mg2+ than with Mn2+. Glycogen stimulated activity about 25%. Modifications of the methods of Soderling et al. ((1970) J. Biol. Chem. 245, 6317--6328) and Nimmo et al. ((1976) Eur. J. Biochem. 68, 21--30) were developed for purification of glycogen synthease (UDPglucose:glycogen 4-alpha D-glucosyltransferase, EC 2.4.1.11) to specific activity of 35 units/mg of protein. Using this preparation of glycogen synthase as substrate, the phosphorylation and inactivation catalyzed by glycogen synthase kinase was compared to that catalyzed by cyclic AMP-dependent protein kinase or phosphorylase kinase. Each of the kinases had different specificities for phosphorylation sites on glycogen synthase.  相似文献   

17.
Of 21 phosphorylation sites identified in PHF-tau 11 are on ser/thr-X motifs and are probably phosphorylated by non-proline-dependent protein kinases (non-PDPKs). The identities of the non-PDPKs and how they interact to hyperphosphorylate PHF-tau are still unclear. In a previous study we have shown that the rate of phosphorylation of human tau 39 by a PDPK (GSK-3) was increased several fold if tau were first prephosphorylated by non-PDPKs (Singh et al., FEBS Lett 358: 267-272, 1995). In this study we have examined how the specificity of a non-PDPK for different sites on human tau 39 is modulated when tau is prephosphorylated by other non-PDPKs (A-kinase, C-kinase, CK-1, CaM kinase II) as well as a PDPK (GSK-3). We found that the rate of phosphorylation of tau 39 by a non-PDPK can be stimulated if tau were first prephosphorylated by other non-PDPKs. Of the four non-PDPKs only CK-1 can phosphorylate sites (thr 231, ser 396, ser 404) known to be present in PHF-tau. Further, these sites were phosphorylated more rapidly and to a greater extent by CK-1 if tau 39 were first prephosphorylated by A-kinase, CaM kinase II or GSK-3. These results suggest that the site specificities of the non-PDPKs that participate in PHF-tau hyperphosphorylation can be modulated at the substrate level by the phosphorylation state of tau.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium/phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - PDPK proline-dependent protein kinase  相似文献   

18.
Phospholipid-sensitive Ca2+ -dependent protein kinase (PL-Ca-PK) and cyclic AMP-dependent protein kinase (A-PK) both preferentially phosphorylated serine residues of bovine myelin basic protein (MBP). Tryptic peptide maps of MBP phosphorylated by PL-Ca-PK or A-PK, however, revealed different phosphopeptides, suggesting a difference in the intramolecular substrate specificity for the two enzymes. Serine-115 of MBP, in the sequence (-Arg-Phe-Ser(115)-Trp-), was found to be a preferred and probably major phosphorylation site for PL-Ca-PK. Because serine-115 of bovine MBP corresponds to serine-113 of rabbit MBP, an in vivo phosphorylation site reported by Martenson et al. (1983), and PL-Ca-PK is present at a very high level in brain and myelin, it is suggested that the enzyme may be responsible for the in vivo phosphorylation of this and other sites in MBP.  相似文献   

19.
Atrial natriuretic peptides refer to a family of related peptides secreted by atria that appear to have an important role in the control of blood pressure. The structure of these peptides shows the amino acid sequence Arg101-Arg102-Ser103-Ser104, which is a typical recognition sequence (Arg-Arg-X-Ser) for phosphorylation by cyclic AMP-dependent protein kinase. With this background, we tested two synthetic atrial natriuretic peptides (Arg101-Tyr126 and Gly96-Tyr126) as substrates for in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. The tested atrial natriuretic peptides were found to be substrates for the reaction. Sequence studies demonstrated that the site of phosphorylation was located, as expected, at Ser104. Kinetic studies demonstrate that both atrial natriuretic peptides are excellent substrates for cyclic AMP-dependent protein kinase. In particular, the longer peptide Gly96-Tyr126 exhibited an apparent Km value of about 0.5 microM, to our knowledge the lowest reported Km for a cyclic AMP-dependent protein kinase substrate. Preliminary studies to measure the biological activity of the in vitro phosphorylated atrial peptides indicate that these compounds are more effective than the corresponding dephospho forms in stimulating Na/K/Cl cotransport in cultured vascular smooth muscle cells.  相似文献   

20.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号