首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of the rat pheochromocytoma clone PC12 possess receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF), thus enabling the study of the interaction of these receptors in the regulation of proliferation and differentiation. Treatment of the cells with NGF induces a progressive and nearly total decrease in the specific binding of EGF beginning after 12 h and completed within 4 d. Three different measures of receptor show that the decreased binding capacity represents, in fact, a decreased amount of receptor: (a) affinity labeling of PC12 cell membranes by cross-linking of receptor-bound 125I-EGF showed a 60-90% decrease in the labeling of 170- and 150-kD receptor bands in cells treated with NGF for 1-4 d; (b) EGF-dependent phosphorylation of a src-related synthetic peptide or EGF receptor autophosphorylation with membranes from NGF-differentiated cells showed a decrease of 80 and 90% in the tyrosine kinase activity for the exogenous substrate and for receptor autophosphorylation, respectively; (c) analysis of 35S-labeled glycoproteins isolated by wheat germ agglutinin-Sepharose chromatography from detergent extracts of PC12 membranes showed a 70-90% decrease in the 170-kD band in NGF-differentiated cells. These findings permit the hypothesis that long-term heterologous down-regulation of EGF receptors by NGF in PC12 cells is mediated by an alteration in EGF receptor synthesis. It is suggested that this heterologous down-regulation is part of the mechanism by which differentiating cells become insensitive to mitogens.  相似文献   

2.
The phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) specifically inhibited the binding of radioiodinated epidermal growth factor (125I-EGF) to rat pheochromocytoma (PC12) cells in a noncompetitive fashion with an apparent Ki of 11–26 nM. Both TPA and EGF elicited similar biological responses in PC12 cells including enhanced incorporation of 3H-choline and 32P-orthophosphate into macromolecules, induction of ornithine decarboxylase, and stimulation of the phosphorylation of a 30,000 MW nonhistone, chromosome-associated protein. These effects were also elicited by nerve growth factor (NGF) which, in contrast to the former agents, is a differentiating stimulus for the PC12 cells. The effects of TPA were additive or more than additive to the effects of NGF and EGF. When PC12 cells were induced to differentiate by treatment with NGF for 72 hours, the binding of 125I-EGF and responses to EGF were reduced by approximately 70%. The response of PC12 cells to the tumor promoter TPA was unaffected by treatment with NGF. Thus, the qualitatively similar effects of TPA and EGF seemed to be mediated through separate receptor systems with only the EGF receptor system reduced by NGF treatment.  相似文献   

3.
The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of 125I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37°C and 4°C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylalion of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with 125I-NGF binding, WGA but not Con A was found to increase, by scveralfold; the proportion of 125I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.  相似文献   

4.
Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased phosphorylation at several distinct sites of the EGF receptor. However, PDGF did not stimulate phosphorylation of threonine 654, a residue previously shown to be phosphorylated when protein kinase C is activated. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also stimulated phosphorylation of the same peptides from the EGF receptor as PDGF, and, in addition, induced phosphorylation of threonine 654. TPA inhibited both high and low affinity 125I-EGF binding by these cells. PDGF treatment of cells had no effect on EGF-dependent, tyrosine-specific autophosphorylation of the receptor, whereas TPA treatment was inhibitory. TPA, but not PDGF, stimulated phosphorylation of a Mr = 80,000 protein, known to be a substrate for protein kinase C, even though PDGF appeared to mediate breakdown of phosphoinositides. These data suggest that regulation of EGF receptor function by PDGF and TPA are distinct in these cells, even though some elements of regulation are shared. The results differ from those previously reported for a human lung fibroblast isolate, indicating that cell type-specific differences may exist in metabolism of the EGF receptor.  相似文献   

5.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

6.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

7.
A single class of high-affinity receptors for EGF were detected on mouse embryonic palatal mesenchyme (MEPM) cells cultured in vitro. The degree of confluence of the cultured cells did not affect the number or affinity of the binding sites. Culture of MEPM cells in the presence of bFGF, IGF-II or TGF-beta 1 induced changes in 125I-EGF binding. TGF-beta 1 caused a marked reduction in binding to 40% of control levels. This reduction was achieved after 2 h and persisted for 24 h after addition of the growth factor. IGF-II induced a similar reduction but this effect was transitory; after a 12 h pretreatment with IGF-II, binding was restored to control levels. The effects of bFGF were biphasic. Initially, a short pre-treatment period (3-5 h) with bFGF caused a small reduction in 125I-EGF binding; longer periods of pre-incubation (24 h) resulted in a large increase in receptor number. Pre-incubation in medium containing both bFGF and TGF-beta 1 resulted in a decrease in EGF binding. Thus, TGF-beta 1 negated the large increase in receptor number induced by bFGF alone. Changes in receptor number were usually, but not always, directly related to changes in the biological activity of EGF, as assessed by a thymidine incorporation assay. This study highlights the possible interactive role of growth factors known to be present in the developing palate.  相似文献   

8.
Incubation of intact rat adipocytes with physiological concentrations of catecholamines inhibits the specific binding of 125I-insulin and 125I-epidermal growth factor (EGF) by 40 to 70%. Affinity labeling of the alpha subunit of the insulin receptor demonstrates that the inhibition of hormone binding is directly reflective of a specific decrease in the degree of receptor occupancy. The stereospecificity and dose dependency of the binding inhibitions are typical of a classic beta 1-adrenergic receptor response with half-maximal inhibition occurring at 10 nM R-(-)-isoproterenol. Specific alpha-adrenergic receptor agonists and beta-adrenergic receptor antagonists have no effect, while beta-adrenergic receptor antagonists block the inhibition of 125I-insulin and 125I-EGF binding to receptors induced by beta-adrenergic receptor agonists. Further, these effects are mimicked by incubation of adipocytes with dibutyryl cyclic AMP or with 3-isobutyl-1-methylxanthine. The beta-adrenergic inhibition of both 125I-insulin and 125I-EGF binding is very rapid, requiring only 10 min of isoproterenol pretreatment at 37 degrees C for a maximal effect. Removal of isoproterenol by washing the cells in the presence of alprenolol leads to complete reversal of these effects. The inhibition of 125I-EGF binding is temperature dependent whereas the inhibition of 125I-insulin binding is relatively insensitive to the temperature of isoproterenol pretreatment. Scatchard analysis of 125I-insulin and 125I-EGF binding demonstrated that the decrease of insulin receptor-binding activity may be due to a decrease in the apparent number of insulin receptors while the inhibition of EGF receptor binding can be accounted for by a decrease in apparent EGF receptor affinity. The decrease in the insulin receptor-binding activity is physiologically expressed as a dose-dependent decrease of insulin responsiveness in the adipocyte with respect to two known responses, stimulation of insulin-like growth factor II receptor binding and activation of the glucose-transport system. These results demonstrate a beta-adrenergic receptor-mediated cyclic AMP-dependent mechanism for the regulation of insulin and EGF receptors in the rat adipocyte.  相似文献   

9.
Separate treatment of PC12h cells with basic fibroblast growth factor (bFGF) and with epidermal growth factor (EGF) induced a selective decrease in the incorporation of radioactive phosphate into a 100,000-dalton soluble protein during phosphorylation with (gamma-32P)ATP of soluble extracts from the cells, as was seen previously with nerve growth factor (NGF). This 100,000-dalton soluble protein was designated in earlier studies as nerve growth factor-sensitive protein 100 (Nsp100). The inhibitory effects of bFGF and EGF on Nsp100 phosphorylation were prevented by pretreatment of PC12h cells with the calcium chelator, EGTA. Treatment of PC12h cells with the plant lectin wheat germ agglutinin (WGA), which binds to N-acetylglucosamine and sialic acid residues on glycoconjugates, blocked the inhibitory effects of bFGF, EGF, and NGF on Nsp100 phosphorylation. The blockage by WGA was reversed by the addition of the lectin-specific sugar N-acetylglucosamine to the PC12h cultures. Although pretreatment of PC12h cells with succinylated WGA, which has the ability to bind to N-acetylglucosamine but not to sialic acid residues, failed to block the inhibitory effect of NGF on Nsp100 phosphorylation as described previously, it did prevent the inhibitory effect of bFGF on this phosphorylation. These data suggest that in PC12h cells bFGF and EGF induce a decrease in the phosphorylation of Nsp100 mediated through a Ca2(+)-dependent mechanism, as in the case of NGF. Furthermore, the blockage of the bFGF-induced inhibition of Nsp100 phosphorylation by WGA and its succinylated form indicates that N-acetylglucosamine residues of bFGF receptor molecules might be involved in the mechanism by which bFGF inhibits the phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Nerve growth factor (NGF) and epidermal growth factor (EGF) produce stable alterations in PC12 cells that persist in the detergent-insoluble cytoskeleton, resulting in the phosphorylation of a 250,000-mol-wt cytoskeletally associated protein in situ. Treatment of PC12 cells with NGF or EGF, followed by detergent lysis of the cells and incubation of the resulting cytoskeletons with gamma-32P-ATP, permitted detection of hormonally stimulated, energy-dependent events, which result in the enhanced phosphorylation of a cytoskeletally associated protein as an immediate consequence of receptor occupancy. These events were elicited only upon treatment of intact cells at physiological temperatures. The NGF- and EGF-stimulated events occurred rapidly; however, they were a transient effect of hormone action. NGF and EGF were found to act through independent mechanisms to stimulate the in situ phosphorylation of the 250,000-mol-wt protein, as the effects of NGF, but not EGF, were blocked by methyltransferase inhibitors. The 250,000-mol-wt protein was phosphorylated on serine and threonine residues in response to both NGF and EGF although in somewhat different proportions. The data suggest that the hormone-stimulated labeling of the 250,000-mol-wt protein may be the result of either the direct activation of a protein kinase, the redistribution of the kinase relative to its substrates as a consequence of hormone action, or the coincident occurrence of these events.  相似文献   

12.
Treatment of Swiss 3T3 fibroblasts with basic fibroblast growth factor (bFGF) lead to a rapid reduction in epidermal growth factor (EGF) binding and a slower inhibition of EGF receptor autophosphorylation. The reduction in binding was due to a complete loss of the highest affinity EGF binding sites and a reduction in the lower affinity binding sites. Neither the inhibition of EGF binding nor the inhibition of EGF receptor autophosphorylation required protein kinase C. Treatment of cells with bFGF stimulated the phosphorylation of the EGF receptor, which persisted for several hours. The inhibition of EGF receptor autophosphorylation by bFGF was reduced in the presence of cycloheximide. However, cycloheximide had no effect on the reduction of EGF binding by bFGF. In contrast to these results with Swiss 3T3 fibroblasts, treatment of PC12 cells with bFGF lead to a reduction in EGF binding but no inhibition of EGF receptor autophosphorylation. Thus inhibited of EGF receptor autophosphorylation and inhibition of EGF binding can be uncoupled. © 1993 Wiley-Liss, Inc.  相似文献   

13.
4 beta-Phorbol 12 beta-myristate 13 alpha-acetate (PMA) markedly inhibited the binding of low concentrations (less than 10(-9 m) of 125I-epidermal growth factor (EGF) to A431 human epidermoid carcinoma cells. However, very little change in the binding of 125-I-EGF at high concentrations (greater than 10(-8) M) was observed in response to PMA. Affinity labeling of the 170,000-dalton EGF receptor with 125I-EGF and disuccinimidyl suberate was also decreased by the tumor promoter at low, but not high, concentrations of 125I-EGF. In order to examine this action of PMA on the EGF receptor, the receptor phosphorylation state was evaluated in A431 cells that had been incubated with [32P]phosphate for 3 h prior to the addition of PMA. The 32P content of the EGF receptor purified with EGF-Sepharose was increased by 38% compared with the same amount of receptor isolated from control cells. The increase in EGF receptor phosphorylation was dose-dependent with a half-maximal effect between 0.1 and 1 nM PMA and was specific for tumor promoting analogues of phorbol diesters. Phosphoamino acid analysis indicated that the increase in the 32P content of the EGF receptor was mainly due to phosphoserine. These results demonstrate that the EGF receptor is a target for PMA action and suggest that the mechanism of PMA action on the response of cells to epidermal growth factor may be mediated in part by phosphorylation of the EGF receptor.  相似文献   

14.
Summary The mitogenic and differentiation-inducing activities of epidermal growth factor (EGF) in epithelial tissues have been well described. Since non-mitogenic effects of EGF, especially in mesenchymal tissues such as smooth muscle are not well-known (Nanney et al. 1984), we have examined EGF-binding and receptors in smooth muscle from many sites. Specific EGF binding sites were detected by incubating small pieces of tissue with 125I-EGF; immunoreactive EGF receptors were detected by immunohistochemistry. In-situ localization of 125I-EGF binding sites and immunoreactive EGF receptors of smooth muscle cells in intact mammalian tissues were identical using either 125I-EGF autoradiography or anti-EGF receptor antibody in an immunoperoxidase method. Cultured rat aortic smooth muscle also contained specific EGF receptors as detected by their biological response to EGF-binding and internalization of 125I-EGF, as well as EGF-stimulated phosphorylation of a 170K protein. The presence of EGF receptors in a well-differentiated smooth muscle cell indicates that EGF may play a physiological, but non-mitogenic role in mammalian tissues in vivo.  相似文献   

15.
The duration of intracellular signaling is thought to be a critical component in effecting specific biological responses. This paradigm is demonstrated by growth factor activation of the extracellular signal-regulated kinase (ERK) signaling cascade in the rat pheochromocytoma cell line (PC12 cells). In this model, sustained ERK activation induced by nerve growth factor (NGF) results in differentiation, whereas transient ERK activation induced by epidermal growth factor (EGF) results in proliferation in these cells. Recently, the immediate early gene product c-fos has been proposed to be a sensor for ERK signaling duration in fibroblasts. In this study, we ask whether this is true for NGF and EGF stimulation of PC12 cells. We show that NGF, but not EGF, can regulate both c-fos stability and activation in an ERK-dependent manner in PC12 cells. This is achieved through ERK-dependent phosphorylation of c-fos. Interestingly, distinct sites regulate enhanced stability and transactivation of c-fos. Phosphorylation of Thr325 and Thr331 are required for maximal NGF-dependent transactivation of c-fos. In addition, a consensus ERK binding site (DEF domain) is also required for c-fos transactivation. However, stability is controlled by ERK-dependent phosphorylation of Ser374, while phosphorylation of Ser362 can induce conformational changes in protein structure. We also provide evidence that sustained ERK activation is required for proper post-translational regulation of c-fos following NGF treatment of PC12 cells. Because these ERK-dependent phosphorylations are required for proper c-fos function, and occur sequentially, we propose that c-fos is a sensor for ERK signaling duration in the neuronal-like cell line PC12.  相似文献   

16.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation.  相似文献   

17.
The role of protein kinase C (PKC) in mediating nerve growth factor (NGF) or basic fibroblast growth factor (bFGF)-stimulated SCG10 and c-fos expression as well as neurite outgrowth was studied in PC12 cells. Activators of PKC such as phorbol 12-myristate 13-acetate (PMA) or 1-oleoyl 2-acetyl glycerol mimicked the stimulatory effect of NGF and bFGF on SCG10 mRNA levels. Induction involved a protein synthesis-dependent mechanism and was maximal within 12-24 h of exposure. Chronic treatment of the cells with PMA for up to 8 days resulted in a substantial decrease (approximately 90%) in total PKC activity in the continued presence of PMA. PKC depletion did not affect NGF- or bFGF-stimulated SCG10 mRNA induction and bFGF-stimulated c-fos mRNA induction. However, NGF-stimulated c-fos mRNA induction was attenuated. In addition, induction of neurite outgrowth was not abolished in PKC-depleted cells. The results imply that PKC is not involved in NGF- and bFGF-stimulated SCG10 mRNA induction and neurite outgrowth. Furthermore, while the effect of bFGF on c-fos mRNA induction is PKC-independent, that of NGF is mediated by PKC-dependent and -independent pathways.  相似文献   

18.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

19.
Amphiregulin (AR) and heparin-binding EGF-like growth factor (HB-EGF) are two recently identified members of the EGF family. Both AR and HB-EGF share with EGF the ability to interact with the type-1 EGF receptor; however, AR and HB-EGF differ from EGF in that both of these mitogens bind to heparin while EGF does not. To determine whether interactions with heparin-like molecules on the cell surface influence binding of AR and HB-EGF with EGF receptors and the subsequent mitogenic activity exerted by these growth factors, murine AKR-2B and Balb/MK-2 cells were treated with either an inhibitor of proteoglycan sulfation (chlorate) or a heparin antagonist (hexadimethrine). As expected, neither treatment significantly altered the specific binding of 125I-EGF on AKR-2B cells. Interestingly, treatment with either chlorate or hexadimethrine inhibited the ability of AR to compete with 125I-EGF for cell surface binding and also attenuated AR-mediated DNA synthesis. Thus, as has been suggested for other heparin-binding growth factors such as basic fibroblast growth factor (bFGF), the interaction of AR with an EGF-binding receptor appears to be facilitated by interaction with cell-associated sulfated glycosami-noglycans or proteoglycans. Unexpectedly, however, neither chlorate nor hexadimethrine treatment caused an inhibition of HB-EGF-induced mitogenic activity. Chlorate treatment did not significantly alter the ability of HB-EGF to compete with 125I-EGF for cell surface binding sites, however, heparin and hexadimethrine reduced the ability of HB-EGF to compete for 125I-EGF binding. These results suggest that, in AKR-2B cells, HB-EGF may mediate its mitogenic response at least in part through a receptor which appears to be selective for HB-EGF and permits HB-EGF-mediated mitogenic responses in the presence of hexadimethrine or heparin. Finally, hexadimethrine inhibited the specific binding and mitogenic activity of bFGF, suggesting that this cationic polymer can function as an antagonist of heparin-binding mitogens other than AR. © 1995 Wiley-Liss, Inc.  相似文献   

20.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung (FRL) cells is increased approximately 2 to 3-fold within 18 h of retinoic acid addition. Analysis of 125I-EGF binding assays at 0 C reveals approximately 25,000 receptors per cell, while analysis of growth factor binding to retinoic acid-treated cells demonstrates an increase in receptor levels to approximately 70,000 receptors per cell with no detectable changes in receptor affinities. We show by immunoprecipitation of 35S-methionine labeled EGF receptors that retinoic acid addition produces an increase in the accumulation of EGF receptor protein. Using brief pulses of 35S-methionine, an increase in EGF receptor synthesis can be identified within 3 h after retinoic acid addition. These results are the first to demonstrate that a retinoic acid-induced increase in 125I-EGF binding capacity is due to increased EGF receptor protein synthesis. Also, we find that a transient decrease in the rate of EGF receptor turnover occurs when retinoic acid is initially added to FRL cells. On the basis of our data, we conclude that the retinoic acid-induced accumulation of EGF receptors in FRL cells is primarily due to increased receptor synthesis. The effect of retinoic acid on EGF receptor turnover may be a secondary factor, influencing the rate at which receptors accumulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号