首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reduction in the amount of light supphed during the mid-rest period caused a hetter leaf bud opening in the peach as compared with natural winter daylight; this includes darkness, short photoperiod and reduced light intensity. The quantitative nature of this light effect was shown. The role of light as a factor regulating dormancy is discussed.  相似文献   

2.
The cultivated/domesticated peach (Prunus persica var. persica; Rosaceae, subgenus Amygdalus; synonym: Amygdalus persica) originated in China, but its wild ancestor, as well as where, when, and under what circumstances the peach was domesticated, is poorly known. Five populations of archaeological peach stones recovered from Zhejiang Province, China, document peach use and evolution beginning ca. 8000 BP. The majority of the archaeological sites from which the earliest peach stones have been recovered are from the Yangzi River valley, indicating that this is where early selection for favorable peach varieties likely took place. Furthermore, peach stone morphology through time is consistent with the hypothesis that an unknown wild P. persica was the ancestor of the cultivated peach. The oldest archaeological peach stones are from the Kuahuqiao (8000–7000 BP) and Tianluoshan (7000–6500 BP) sites and both stone samples segregate into two size groups, suggesting early selection of preferred types. The first peach stones in China most similar to modern cultivated forms are from the Liangzhu culture (ca. 5300 to 4300 BP), where the peach stones are significantly larger and more compressed than earlier stones. Similar peach stones are reported from Japan much earlier (6700–6400 BP). This large, compressed-stone peach was introduced to Japan and indicates a yet unidentified source population in China that was similar to the Liangzhu culture peach. This study proposes that the lower Yangzi River valley is a region, if not the region, of early peach selection and domestication and that the process began at least 7500 years ago.  相似文献   

3.
Sucrose synthase (EC 2.4.1.13 [EC] ) was purified from peach fruit(Prunus persica) to a single band of protein on SDS-PAGE byammonium sulfate fractionation, DEAE-cellulose (DE-52) chromatography,Sepharose CL-6B gel filtration, PBA-60 affinity chromatographyand Sephadex G-200 gel filtration. The molecular weight wasestimated to be 360,000 by gel filtration. The enzyme was foundto be a tetramer of identical 87-kDa subunits. The maximum activityfor the synthesis and cleavage of sucrose was observed at pH8.5 and pH 7.0, respectively. The enzymatic reaction followedtypical Michaelis-Menten kinetics in both directions, with thefollowing parameters: Km(fructose), 4.8 mmM; Km(UDPglucose),0.033 mM; Km(sucrose), 62.5 mM; Km(UDP), 0.080 mM. Other properties,such as substrate specificity and the effects of divalent cations,were also investigated. The relationship between the enzymeand the accumulation of sucrose in peach fruit is discussed. Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Chikusa, Nagoya 464, Japan. (Received May 2, 1988; Accepted September 14, 1988)  相似文献   

4.
Traditional identification of peach and nectarine varieties relies on the assessment of agronomic traits of the adult plant. This leads to a significant delay of time, constraints to breeders in the surveillance of germplasm and a risk for fruit growers and exporters. We describe a method for rapid assessment of peach and nectarine varieties based on AFLP fingerprinting and extraction of high quality DNA. The best primer pairs were selected from 64 primer combinations that reliably distinguished 8 peach and 6 nectarine varieties. A graphical representation of the detected polymorphisms was shown to simplify the analysis.  相似文献   

5.
研究了白凤桃果实贮藏过程中光照条件对果实成熟的影响。在7月12日(未熟期)和7月16日(硬熟期)采收果实,分别贮藏在光条件(白色荧光灯照明,果顶部光强为80μmol m~(-2)s~(-1))和暗条件中,室温均为25℃。硬熟期采收果实贮藏在光条件下,达到完熟期时,乙烯生成量较低。果肉的硬度在各个采收期,各种贮藏条件下均没有差别。光条件贮藏果实中花青苷含量较高。未熟期采收果实贮藏在光条件下时,可溶性固形物含量增加较多。光条件贮藏果实中天冬酰胺的下降比暗贮藏果实中更多。各时期采收的果实中,在光下贮藏时,果肉和果皮γ-癸内酯和γ-十二内酯的含量都明显增加。以上结果表明,白凤桃果实采收后在光下贮藏,可以明显改善果实的品质。  相似文献   

6.
The ontogeny of the peach seed and its organs correlates wellwith the stages of growth of the pericarp of peach fruit. Theinitial stages of rapid f.wt (FW I) and d.wt (DW I) increasecoincide with the period of rapid f.wt increase of the wholeseed and rapid size increase of the endosperm respectively.The period of slow f.wt increase of the fruit (FW II) coincideswith the period of rapid size increase of the embryo. The seed and pericarp compete strongly for assimilates throughoutfruit development and the seed is the weaker competitor. Thereis no period however when the growth of the seed or one of itsorgans inhibits the sink strength of the pericarp to allow theseed to develop. The data presented indicate that the periodsof high nutrient demand (DW I and DW III) are created in thepericarp in response to a stimulatory signal from the seed andthe period of low nutrient demand (DW II) results from the absenceof this signal after the endosperm reaches full size.  相似文献   

7.
桃中两个MADS box基因的克隆与表达分析   总被引:6,自引:1,他引:6  
为研究李属(Prunus sp.)果树生殖调控的相关基因,对国际公共数据库中的李属植物的EST(expressed sequence tags)序列进行了电子拼接,获得了8个MADS box基因的cDNA序列,并利用PCR技术从桃中克隆出其中的两个cDNA,分别命名为PpMDS4和PpMADS6,在GenBank中的登录号为AY705972和AY705973。PpMADS4基因长850bp,包含一个732bp的开放阅读框,编码243个氨基酸。PpMADS6基因长1190bp,包含1个768bp的开放阅读框,编码256个氨基酸。PpMADS4和PpMADS6在序列上分别与拟南芥中的AGAMOUS基因和矮牵牛中的PFG基因高度同源。RT-PCR分析表明,PpMADS4基因在桃的花瓣、心皮、果实及果仁中表达,应属于控制花器官发育的C类MADS box基因。PpMADS6基因在桃的叶、萼片、花瓣、心皮及果实中表达,应属于调控植物由营养生长向生殖生长过渡的A类MADSbox基因。  相似文献   

8.
桃品种'八月香'花粉的超低温保存   总被引:6,自引:0,他引:6  
桃品种‘八月香’的花粉经4℃硅胶干燥8h或(20±1)℃下玻璃化液PVS4(35%甘油 20%乙二醇 0.6mol·L-1蔗糖)处理60min后直接投入液氮保存,解冻后的萌发率都可以达到70%以上,萌发率与保存时间长短无关。  相似文献   

9.
在不同修剪手法下,对栽培桃树(Prunuspersica(L.)Batsch)不同母枝上的分枝模式进行了比较研究。从分枝模式来看修剪后的母枝基本由3个不同的区域组成,基部是不萌发的潜伏芽形成的未分枝区域;中部是延迟分枝和多次分枝组成的分枝区域(主要的枝条类型有短枝、长枝和多次枝);顶部是被剪除的部分。我们通过隐式半马尔可夫模型来模拟这一分枝模式,主要是定量描述1次枝和多次枝在母枝上的数量及其分布状况。在上述模型中,未分枝区、延迟分枝区和多次分枝区称为瞬时态,被剪除的部分称为吸收态。模拟的结果与观察的结果进行对比后发现,两者具有很好的一致性。这说明隐式半马尔可夫模型是模拟植物分枝过程的一种有效方法,尽管隐式半马尔可夫链模型只是一个描述性的模型,但仍能对其所描述的生物现象进行解释,在预测修剪手法对母枝分枝模式影响方面比传统的方法具有明显的优势。本研究结果是建立三维虚拟桃树树冠分枝结构的基础。  相似文献   

10.
在不同修剪手法下,对栽培桃树(Prunuspersica(L.)Batsch)不同母枝上的分枝模式进行了比较研究.从分枝模式来看:修剪后的母枝基本由3个不同的区域组成,基部是不萌发的潜伏芽形成的未分枝区域;中部是延迟分枝和多次分枝组成的分枝区域(主要的枝条类型有短枝、长枝和多次枝);顶部是被剪除的部分.我们通过隐式半马尔可夫模型来模拟这一分枝模式,主要是定量描述1次枝和多次枝在母枝上的数量及其分布状况.在上述模型中,未分枝区、延迟分枝区和多次分枝区称为瞬时态,被剪除的部分称为吸收态.模拟的结果与观察的结果进行对比后发现,两者具有很好的一致性.这说明隐式半马尔可夫模型是模拟植物分枝过程的一种有效方法,尽管隐式半马尔可夫链模型只是一个描述性的模型,但仍能对其所描述的生物现象进行解释,在预测修剪手法对母枝分枝模式影响方面比传统的方法具有明显的优势.本研究结果是建立三维虚拟桃树树冠分枝结构的基础.  相似文献   

11.

Background

Growing evidence shows the potential of nutritional interventions to treat obesity but most investigations have utilized non-digestible carbohydrates only. Peach and plum contain high amounts of polyphenols, compounds with demonstrated anti-obesity effects. The underlying process of successfully treating obesity using polyphenols may involve an alteration of the intestinal microbiota. However, this phenomenon is not well understood.

Methodology/Principal Findings

Obese Zucker rats were assigned to three groups (peach, plum, and control, n = 10 each), wild-type group was named lean (n = 10). Carbohydrates in the fruit juices were eliminated using enzymatic hydrolysis. Fecal samples were obtained after 11 weeks of fruit or control juice administration. Real-time PCR and 454-pyrosequencing were used to evaluate changes in fecal microbiota. Over 1,500 different Operational Taxonomic Units at 97% similarity were detected in all rats. Several bacterial groups (e.g. Lactobacillus and members of Ruminococcacea) were found to be more abundant in the peach but especially in the plum group (plum juice contained 3 times more total polyphenolics compared to peach juice). Principal coordinate analysis based on Unifrac-based unweighted distance matrices revealed a distinct separation between the microbiota of control and treatment groups. These changes in fecal microbiota occurred simultaneously with differences in fecal short-chain acids concentrations between the control and treatment groups as well as a significant decrease in body weight in the plum group.

Conclusions

This study suggests that consumption of carbohydrate-free peach and plum juice has the potential to modify fecal microbial ecology in an obese animal model. The separate contribution of polyphenols and non-polyphenols compounds (vitamins and minerals) to the observed changes is unknown.  相似文献   

12.
13.
Exposure of peach plants to the blue plus far-red (B/FR) portions of the sunlight spectrum caused a rapid rise in ethylene evolution from their apices. Two days were enough to produce a significant rise in ethylene evolution relative to blue without far-red or to neutral shade. Maximal level of ethylene evolution in the B/FR light, more than eight times that of the blue or the neutral shade, was reached after four days of exposure. A higher endogenous ethylene content was also found under B/FR relative to blue or to neutral shade conditions. The level of ethylene evolution from peach apices was correlated with their arrested growth as observed a few days later. Exposure of peach plants to dense leaf shade, under the canopy of a big avocado tree, enhanced ethylene evolution from their apices, relative to unfiltered sunlight and to neutral shade. It was suggested that the rise in ethylene evolution in both B/FR and leaf shade conditions resulted from a high far-red: red ratio. Ethylene was further suggested to act as a mediator of photomorphogenetic regulation of vegetative development in far-red-rich tree shade.  相似文献   

14.
本研究首先从桃中克隆了AGAMOUS(AG)同源基因PpMADS4的第二个内含子--pPpMADS4,全长约2.1kb。序列分析表明,该内含子含有一些对基因表达十分重要的调控元件。同时,克隆了七个不同桃品种中的PpMADS4基因的第二内含子,序列比对和SNP测算表明,PpMADS4第二内含子是一段SNP富集区域,具有高度的核苷酸多态性,但是在这段序列上各个调控元件的序列和位置都非常保守,暗示了这些调控元件可能具有很重要的生物学功能。为了认识这一内含子的调控功能,将pPpMADS4与minimal35S连接并与GUS基因融合,构建表达载体转入野生型拟南芥中。GUS染色显示,其表达主要分布在花的两轮生殖器官上,这与拟南芥中AG第二内含子调控的GUS着色部位相似,但存在着差异。PpMADS4第二内含子能够特异启动GUS在花发育晚期的表达。  相似文献   

15.
Changes in the obturator of the peach (Prunus persica) havebeen investigated and related to pollen tube growth in thisregion. At anthesis, the cells of the obturator are active andrich in starch reserves. Twelve days after anthesis these cellsproduce a secretion that stains for carbohydrates and for proteins.As the secretion is produced, starch vanishes from these cellsand they degenerate and collapse as callose is accumulated.Secretion is independent of pollination as it takes place ina similar fashion both in pollinated and in unpollinated flowers. Pollen tube growth along the obturator surface depends on thissecretion for, although pollen tubes reach the base of the styleseven days after pollination, they cannot grow on the obturatoruntil five days later, when the secretion is produced. Thisdiscontinuous secretion taking place at the obturator may providea mechanism that controls the entrance of pollen tubes intothe ovary in the peach. Prunus persica, peach, obturator, pollen tube  相似文献   

16.
17.
The use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels. In this work, a 72 h anoxic treatment by using an N(2) storage atmosphere was applied to peaches (Prunus persica L. Batsch) after harvest. Ripening was effectively delayed in treated fruits, preventing fruit softening, color changes and ethylene production. Metabolic changes induced by anoxia included induction of fermentative pathways, glycolysis and enzymes involved in both sucrose synthesis and degradation. Sucrose, fructose and glucose contents remained unchanged in treated fruit, probably due to sucrose cycling. Sorbitol was not consumed and citrate was increased, correlating with citric acid cycle impairment due to O(2) deprivation. Malate content was not affected, indicating compensation in the reactions producing and consuming malate. Changes in malic enzymes and pyruvate orthophosphate dikinase may provide pyruvate for fermentation or even act to regenerate NADP. After fruit transfer to aerobic conditions, no signs of post-anoxia injury were observed and metabolic changes were reversed, with the exception of acetaldehyde levels. The results obtained indicate that peach fruit is an organ with a high capacity for anoxic tolerance, which is in accord with the presence of hypoxic areas inside fruits and the fact that hypoxic pre-treatment improves tolerance to subsequent anoxia.  相似文献   

18.
Flower buds of peach (Prunus persica L.) trees, cv Novedad de Cordoba (Argentina), were collected near the end of the dormant period and immediately before anthesis. After removal of scale leaves, morphological observations of representative buds, made on transverse and longitudinal microtome sections, showed that all verticils making up the flower are present in an undifferentiated form during the dormant period (June). Flower buds collected at the end of dormant period (August) showed additional growth and differentiation, at which time formation of two ovules was beginning in the unicarpelar gynoecium. Dehiscence of anthers had not yet occurred 10 days before full bloom, and the ovules were still developing. Free endogenous gibberellin (GA)-like substances were quantified by bioassay (Tan-ginbozu dwarf rice microdrop) after SiO2 partition column chromatography, reversed phase C18-high performance liquid chromatography, and finally Nucleosil [N(CH3)2]high performance liquid chromatography. Bioactive fractions were then subjected to capillary gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM). Gibberellins A1, A3, and A8 were tentatively identified in peach flower buds using GC-SIM and Kovat's retention indices, and relative amounts approximated by GC-SIM (2:8:6 for GA1, GA3, and GA8, respectively). The highest concentration (330 nanograms per gram dry weight) of free GA1/GA3 was found in dormant buds (June) and diminished thereafter. The concentration free of GA1/GA3 did not increase immediately prior to bud break. However, high GA1/GA3 concentrations occurred during stages where rate of growth and cellular differentiation of (mainly fertile) verticils can be influenced.  相似文献   

19.
A LEAFY/FLORICAULA (LFY/FLO) homolog PpLFL (P runus p ersica L EAFY/ F LORICAULA L ike) gene was isolated from axillary buds of peach (Prunus persica (L.) Batsch. cv. Bayuecui) during flower induction period. The open reading frame of PpLFL spanned 1,248 bp, encoding a putative protein of 415 amino acid residues, which was with high similarity (50.48 %–84.69 %) to other FLO/LFY inferred proteins from different species. The spatial expression patterns of PpLFL were detected in axillary buds during the periods of flower induction by using immunohistolocalisation. The results showed that PpLFL gene was mainly expressed during flower induction time, and also in leaf and petal promordia at the SAM. For further functional analysis, the PpLFL was constitutively expressed in the Arabidopsis lfy mutant background, and the results showed that overexpression of PpLFL under the control of CaMV 35S promoter can accelerate flowering and give rise to normal flower organs. Our results suggest that PpLFL might play an important role in flower induction, and could act as a functional flower meristem identity gene in peach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号