首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of arrhythmias in the isolated heart by perfusion with lysophosphatidylcholine has been well documented. However, the role of the lysophospholipid as a physiological factor in the generation of cardiac arrhythmias is not clear. In this study, a pharmacological approach was used to delineate the physiological significance of lysophosphatidylcholine during this cardiac dysfunction. Lidocaine (5-20 mg/L) was found to be effective in the protection of the isolated rat heart from the lysophospholipid-induced arrhythmias at pharmacological concentrations. The effect of lidocaine in the protection of lysophospholipid-induced membrane dysfunction was studied with red blood cells. Lidocaine (2 mg/mL) protected red blood cells from hemolysis in the presence of lysophosphatidylcholine. Lidocaine did not inhibit the binding of the lysophospholipid to the red cell membrane, but inhibited hemolysis in a manner similar to cholesterol. The results are consistent with the postulate that lysophosphatidylcholine is a physiological factor in the pathogenesis of cardiac arrhythmias during myocardial ischemia.  相似文献   

2.
An acidic phospholipase A2 (EC 3.1.1.4) isolated from Naja naja siamensis venom blocks acetylcholine receptor function in excitable post synaptic membrane vesicles from Torpedo californica electroplax. Specifically, the phospholipase acts catalytically to prevent the large increase in sodium efflux induced by carbamylcholine. The efflux inhibition can be correlated with specific hydrolysis of phospholipids in the membrane. During the time course of inhibition, the binding affinity of the receptor for carbamylcholine increases 10-fold, a phenomenon associated with receptor desensitization. Prolonged treatment of the membranes with phospholipase A2 causes nonspecific lysis of the vesicles. Incorporation of unsaturated fatty acids or lysophosphatidylcholine into Torpedo membranes also blocks carbamylcholine-induced sodium efflux. The fatty acids have no effect on the binding affinity of the receptor, and lysophosphatidylcholine causes a small decrease in receptor affinity for carbamylcholine. Lysophosphatidylethanolamine and most saturated fatty acids have no direct effect on sodium efflux, but the lysophosphatides cause vesicle lysis. All of the inhibitory effects of the phospholipase and the fatty acids can be reversed and/or prevented by treatment of the vesicles with bovine serum albumin.  相似文献   

3.
Y Z Cao  K O  P C Choy    A C Chan 《The Biochemical journal》1987,247(1):135-140
Lysophosphatidylcholine is the major lysophospholipid in mammalian tissues and has been shown to be cytolytic at high concentrations. In the present study we demonstrated that the level of lysophosphatidylcholine was significantly increased in the heart of rats fed with a vitamin E-deficient diet. Moreover, the cardiac lysophosphatidylcholine level was decreased in rats fed with a high vitamin E diet. The alterations in cardiac lysophosphatidylcholine level by dietary vitamin E were attributed to the changes in the activity of cardiac phospholipase A. Dietary vitamin E affected both phospholipase A1 and A2 in the same manner, but had no effect on the other major enzymes which are responsible for the metabolism of lysophosphatidylcholine. Kinetic studies revealed that the inhibition of enzyme activity by vitamin E was essentially non-competitive. The accumulation of lysophosphatidylcholine in the rat heart may be one of the underlying biochemical causes of the observed cardiac dysfunctions produced during vitamin E deficiency.  相似文献   

4.
The effect of albumin on the release of [3H]lysophosphatidylcholine from cultured rat hepatocytes prelabelled with [Me-3H]choline was studied. In the absence of serum and albumin from the medium, the cells released essentially no [3H]lysophosphatidylcholine. Albumin stimulated this process dramatically, and it reached a plateau at 2 mg/ml. After an initial lag of 30 min, the release of [3H]lysophosphatidylcholine was linear for at least 4 h. At low concentrations, albumin slightly stimulated [3H]phosphatidylcholine release. The albumin had no measurable effect on the metabolism of cellular [3H]phosphatidylcholine, [3H]lysophosphatidylcholine or [3H]glycerophosphocholine. In addition, albumin did not alter the release of 3H-labelled water-soluble compounds, including [3H]glycerophosphocholine, into the medium. The possibility that the [3H]lysophosphatidylcholine was arising from catabolism of [3H]phosphatidylcholine in the medium by secreted enzymes was excluded. The effect on [3H]lysophosphatidylcholine secretion was also observed when the cells were incubated with alpha-cyclodextrin, a cyclic polysaccharide that has the ability to bind lysophosphatidylcholine. The albumin-released lysophosphatidylcholine was enriched in unsaturated fatty acids. Alteration of the fatty acid composition of cellular phosphatidylcholine gave rise to parallel changes in phosphatidylcholine and lysophosphatidylcholine in the medium. It is concluded that phosphatidylcholine is constantly being degraded in the rat hepatocyte to lysophosphatidylcholine which is released into the medium only when a suitable acceptor is present.  相似文献   

5.
In this study, lysophosphatidylcholine (lysoPC) was shown to bind to a fatty acid binding protein isolated from rat liver. To demonstrate the binding, lysoPC was incorporated into multilamellar liposomes and incubated with protein. For comparison, binding of both lysoPC and fatty acid to liver fatty acid binding protein, albumin, and heart fatty acid binding protein were measured. At conditions where palmitic acid bound to liver fatty acid binding protein and albumin at ligand to protein molar ratios of 2:1 and 5:1, respectively, lysoPC binding occurred at molar ratios of 0.4:1 and 1:1. LysoPC did not bind to heart fatty acid binding protein under conditions where fatty acid bound at a molar ratio of 2:1. Competition experiments between lysoPC and fatty acid to liver fatty acid binding protein indicated separate binding sites for each ligand. An equilibrium dialysis cell was used to demonstrate that liver fatty acid binding protein was capable of transporting lysoPC from liposomes to rat liver microsomes, thereby facilitating its metabolism. These studies suggest that liver fatty acid binding protein may be involved in the intracellular metabolism of lysoPC as well as fatty acids, and that functional differences may exist between rat liver and heart fatty acid binding protein.  相似文献   

6.
Sensitivity of 7-day-old chick embryo ventricular heart fragments to acetylcholine was investigated. Low doses mainly produced a positive chronotropic effect, whereas high doses of acetylcholine provoked a decrease in the heart beat rhythm. The positive chronotropic effect of acetylcholine was related to the presence of nicotinic receptors that were evidenced within ventricular myocardium by autoradiography. Membrane potential recording showed that acetylcholine hyperpolarizes the diastolic membrane potential when the drug had a negative chronotropic effect. This effect of acetylcholine on the membrane potential was not observed when the drug had a positive chronotropic effect. In many cases, the diastolic membrane potential exhibited spontaneous small depolarizing potentials. Their amplitude was low and their frequency was irregular. These potentials were suppressed by treatment with alpha-bungarotoxin, suggesting that they are triggered by nicotinic receptor activation.  相似文献   

7.
Chronic Chagasic patient immunoglobulins (CChP-IgGs) recognize an acidic amino acid cluster at the second extracellular loop (el2) of cardiac M(2)-muscarinic acetylcholine receptors (M(2)AChRs). These residues correspond to a common binding site for various allosteric agents. We characterized the nature of the M(2)AChR/CChP-IgG interaction in functional and radioligand binding experiments applying the same mainstream strategies previously used for the characterization of other allosteric agents. Dose-response curves of acetylcholine effect on heart rate were constructed with data from isolated heart experiments in the presence of CChP or normal blood donor (NBD) sera. In these experiments, CChP sera but not NBD sera increased the efficacy of agonist action by augmenting the onset of bradyarrhythmias and inducing a Hill slope of 2.5. This effect was blocked by gallamine, an M(2)AChR allosteric antagonist. Correspondingly, CChP-IgGs increased acetylcholine affinity twofold and showed negative cooperativity for [(3)H]-N-methyl scopolamine ([(3)H]-NMS) in allosterism binding assays. A peptide corresponding to the M(2)AChR-el2 blocked this effect. Furthermore, dissociation assays showed that the effect of gallamine on the [(3)H]-NMS off-rate was reverted by CChP-IgGs. Finally, concentration-effect curves for the allosteric delay of W84 on [(3)H]-NMS dissociation right shifted from an IC(50) of 33 nmol/L to 78 nmol/L, 992 nmol/L, and 1670 nmol/L in the presence of 6.7 x 10(- 8), 1.33 x 10(- 7), and 2.0 x 10(- 7) mol/L of anti-el2 affinity-purified CChP-IgGs. Taken together, these findings confirmed a competitive interplay of these ligands at the common allosteric site and revealed the novel allosteric nature of the interaction of CChP-IgGs at the M(2)AChRs as a positive cooperativity effect on acetylcholine action.  相似文献   

8.
1-Hexadecylpropanediol-3-phosphorylcholine, an ether-deoxy analog of lysophosphatidylcholine, has been employed to study the sensitivity of various types of mouse cells with respect to changes in membrane permeability induced by lysophosphatidylcholine. Cells used included erythrocytes, thymocytes, spleen cells and macrophage, as well as 4 different tumors (2 lymphomas, 1 Ehrlich acites and 1 methylcholanthren-induced fibrosarcoma). The sensitivity to the lysophosphatide (on a per-cell basis) of the above cell types varied by a factor of 65. When lytic concentrations were related to available membrane surface, this variation was reduced to a factor of 2.5. No principal difference was observed between the sensitivity of normal versus tumor cell membranes with respect to lysophosphatidylcholine lysis. Membrane surface, available for lysophosphatidylcholine, has been estimated from binding equilibria of 14C-labelled deoxy-lysophosphatidylcholine to the cells under standardized conditions. This method is based on the finding that binding equilibria of lysophospholipids to cells are predominantly determined by the available membrane surface.  相似文献   

9.
A serum factor from patients with myasthenia gravis which inhibited the binding of 125I-labeled alpha-bungarotoxin to acetylcholine receptor extracted with Triton X-100 from rat muscle has been studied in detail. The inhibitory activity was localized to the IgG fraction based upon the fractionations by sodium sulfate precipitation and DEAE chromatography as well as reaction with anti-IgG globulin. The myasthenic globulin inhibited toxin binding to receptors extracted from degenerated muscle but did not inhibit toxin binding to normal junctional receptors. At saturation levels of myasthenic globulin, the number of denervated acetylcholine receptors available for toxin binding was reduced approx. 50 percent. The myastehnic globulin was found to bind to denervated acetylcholine receptors but not to normal acetylcholine receptors by a radioimmunoassay technique in which myasthenic globulin incubated with 125I-labeled alpha bungarotoxin-receptor complexes was precipitated by anti-IgG serum. The globulin binding was saturable over the same range as inhibition of toxin binding. The data suggest that the myasthenic IgC binds to a site on the receptor complex juxtaposed to the acetylcholine receptor site. The myasthenic globulin appears to be a useful probe for investigation differences between acetylcholine receptors extracted from normal and denervated muscle and for investigating the pathogenesis of myasthenia gravis.  相似文献   

10.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

11.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

12.
Prolonged ethanol administration has been reported to cause defects in cardiac performance and abnormal cardiac lipid contents. However, little is known regarding the short-term administration of ethanol to the perfused heart and its effect on cardiac phospholipid metabolism. In this study, the isolated Langendorff heart perfusion was used as a model to study the effects of ethanol and a combination of ethanol and vitamin E (DL-alpha-tocopherol) on phospholipid metabolism. When perfused with 1% ethanol for 4 h, the major cardiac phospholipids were not altered but a 60% increase in lysophosphatidylcholine level was observed. Studies on the lysophosphatidylcholine metabolic enzymes revealed that phospholipase A (both phospholipase A1 and A2) activity was enhanced in the ethanol-perfused heart, but lysophospholipase and acyltransferase activities were unaffected by ethanol treatment. When the heart was perfused with 1% ethanol in the presence of 50-100 microM vitamin E, the ethanol-induced lysophosphatidylcholine accumulation was completely abolished. This was largely attributed to the attenuation of phospholipase A activities by vitamin E. In order to delineate the opposing effects of ethanol and vitamin E on phospholipid metabolism in the heart, phospholipase A activities in the subcellular fractions were determined in the presence of 0.5-2.0% ethanol or a combination of 1% ethanol and 0-100 microM vitamin E. Ethanol alone exhibited a biphasic effect on phospholipase A activity with maximum stimulation of enzyme activities at 1% concentration. When phospholipase A was assayed in 1% ethanol and vitamin E (25-100 microM), its activity was inhibited by vitamin E in a dose-dependent manner. The mechanism by which ethanol enhanced phospholipase A activities was further investigated with a partially purified enzyme from the rat heart cytosol. Kinetic studies with different concentrations of phosphatidylcholine revealed that at low substrate concentrations, ethanol was inhibitory to the reaction, whereas at high substrate concentrations, the reaction was enhanced by ethanol. Vitamin E (50 microM) completely abolished the ethanol-induced enhancement of enzyme activity in a noncompetitive manner. Since lysophosphatidylcholine is cytolytic at high concentration and its accumulation in the heart has been postulated as a biochemical cause of cardiac dysfunction, the level of the lysolipid in the heart must be under rigid control. Our result suggest that the modulation of cardiac phospholipase A activity is an important mechanism for the the regulation of lysophosphatidylcholine levels in the rat heart.  相似文献   

13.
The effect of lysolecithin (lysophosphatidylcholine) on the relaxation of rabbit aortic strip closely resembled that produced by acetylcholine (ACh) which releases the endothelium-derived relaxing factor (EDRF). Relaxation induced by lysolecithin depended on the presence of endothelium and was inhibited by hemoglobin and methylene blue. It appeared to be mediated by the second messenger, c-GMP. Lysolecithin induced relaxation was slower but more persistent than that resulting from the endothelium-derived relaxing factor (EDRF) produced by acetylcholine (ACh). Like lysolecithin, Triton X-100, a non-ionic detergent, also preferentially relaxed aortic strips with intact endothelium. The results demonstrate the importance of phospholipids derived from cell membranes in vascular smooth muscle relaxation. Endothelium-derived relaxing factors appear as a group of heterogeneous substances.  相似文献   

14.
The binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured cardiac cells has been compared with the binding observed in homogenized membrane preparations. The antagonists [3H]quinuclidinyl benzilate and [3H]N-methylscopolamine bind to a single class of receptor sites on intact cells with affinities similar to those seen in membrane preparations. In contrast with the heterogeneity of agonist binding sites observed in membrane preparations, the agonist carbachol binds to a homogeneous class of low-affinity sites on intact cells with an affinity identical to that found for the low-affinity agonist site in membrane preparations in the presence of guanyl nucleotides. Kinetic studies of antagonist binding to receptors in the absence and presence of agonist did not provide evidence for the existence of a transient (greater than 30 s) high-affinity agonist site that was subsequently converted to a site of lower affinity. Nathanson N. M. Binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured heart cells.  相似文献   

15.
Using a new nitric oxide analyser, we have developed a sensitive chemiluminescence assay to detect trace quantities of NO in aqueous solutions. This improved technique in combination with the bioassay has been employed to verify the theory that NO released by vascular endothelium, accounts for the relaxation produced by acetylcholine, lysophosphatidylcholine and calcium ionophore A23187. Our results show that while calcium ionophore A23187 continuously released NO, acetylcholine and lysophosphatidylcholine relaxed vascular strips without releasing NO over the basal level.  相似文献   

16.
Fetal serum somatomedin-like receptor activity and the specific binding of Multiplication-stimulating activity to preparations of a variety of fetal and maternal tissues were measured in sheep throughout the latter half of gestation. Serum activity and the specific binding to fetal liver and lung preparations increased as gestation progressed, while the binding to fetal heart and placenta, and maternal kidney decreased. Most tissues exhibited greater specific binding of Multiplication-stimulating activity than insulin at term. At all ages fetal liver had the highest and fetal brain exhibited the lowest binding of Multiplication-stimulating activity. The results indicate that a factor which is similar to Multiplication-stimulating activity is present in ovine serum and that ovine tissues possess receptors for this factor. The ontogenic changes observed suggest that this factor is involved in the regulation of growth of the fetus.  相似文献   

17.
Four stable, hybrid-cell lines secreting monoclonal antibodies to distinct determinants on the nicotinic acetylcholine receptor from chick muscle have been established. These were characterised by the following criteria: immunoglobulin isotype, ability to produce experimental autoimmune myasthenia gravis in mice and reactivity towards homologous and heterologous acetylcholine receptor proteins. Two monoclonal antibodies were found to inhibit the reaction of alpha-bungarotoxin with homologous acetylcholine receptor; in addition one of these, on binding to receptor-toxin, induced a rapid dissociation of the complex (t1/2 = 0.5 h at 23 degrees C). Three of the antibody preparations recognised epitopes on this receptor from muscle of other species and two of these caused experimental autoimmune myasthenia gravis in BALB/c mice following passive transfer. The latter two recognised to significant extents the alpha-bungarotoxin binding component purified from chick optic lobe and brain cortex. Sedimentation analysis demonstrated that two of the monoclonal antibodies form a distinct size (s20, w = 12S) of complex with the receptor of chick muscle which most probably corresponds to a 1:1 attachment of antibody and receptor; this may involve cross-linking of two determinants within the same oligomer. A similar observation was made with the alpha-bungarotoxin binding component from optic lobe using one of the cross-reacting antibodies. Another monoclonal antibody was found to be capable of forming much heavier complexes with the receptor from chick muscle, these are thought to involve inter-molecular cross-linking of oligomers. The observed properties of these antibodies are discussed in relation to their myasthenogenicity and with reference to the extent of structural similarities between the peripheral nicotinic acetylcholine receptor and the alpha-bungarotoxin binding protein from brain.  相似文献   

18.
Our previous experiments in membranes prepared from rat heart and brain led us to suggest that the binding of agonists to the muscarinic receptors and to the Na+ channels is a coupled event mediated by guanine nucleotide binding protein(s) [G-protein(s)]. These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of [3H]acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of [3H]batrachotoxin to Na+ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced 22Na+ uptake in the presence and absence of tetrodotoxin, which blocks Na+ channels. Our findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na+ channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components--receptor, G-protein, and Na+ channel--is such that at resting potential the muscarinic receptor induces opening of Na+ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.  相似文献   

19.
Rat serum phosphorylcholine-binding protein (PCBP), a member of the pentraxin family of proteins, was previously shown to bind multilamellar liposomes prepared with egg phosphatidylcholine and lysophosphatidylcholine. The results suggested that the phosphorylcholine groups on the surface of liposomes play an important role in the binding process (Nagpurkar, A., Saxena, U., and Mookerjea, S. (1983) J. Biol Chem. 258, 10518-10523). A study on the binding of human plasma lipoproteins to PCBP immobilized on Sepharose has now been initiated. Very low density lipoproteins were partially bound to a Sepharose-PCBP column, and the bound fraction contained higher concentrations of apoprotein B and E. All the low density lipoproteins applied were bound to the column. In the case of high density lipoproteins, only a small fraction was retained on the column (based on protein analysis), and that bound fraction contained all the apoprotein E and Lp(a) lipoprotein. The binding of very low, low, and high density lipoproteins to Sepharose-PCBP was Ca2+-dependent, and the bound lipoproteins were quantitatively eluted by a phosphorylcholine gradient. Apoprotein B and E were also bound when whole human plasma was applied to Sepharose-PCBP. The effect of selective modification of lysine residues by acetoacetylation and of arginine residues by cyclohexanedione on the binding of low density lipoproteins to Sepharose-PCBP was examined. Modification of arginyl residues resulted in marked reduction of binding, whereas modification of lysine had no effect. Removal of sialic acid from PCBP also had no effect on the binding of low density lipoproteins to immobilized-desialylated PCBP column. The preferential binding of apoprotein B- and E-containing lipoproteins to Sepharose-PCBP indicates a possible physiological role of PCBP and other similar circulating phosphorylcholine-binding proteins of the pentraxin family in lipoprotein metabolism.  相似文献   

20.
Inhibitory effect of myasthenic patients antibodies on alpha-bungarotoxin binding to the human acetylcholine receptor has been demonstrated by radioimmunoassay. By using decamethonium, an acetylcholine agonist, we have shown the existence of two antibody sub-groups reacting with the toxin-binding site: one sub-group is represented by antibodies which block the binding directly, the other by antibodies that inhibit the binding, only in the presence of decamethonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号