首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A method for comparing the relative abilities of different hyperthermia heating modalities to properly heat tumors has been developed using solutions of the bio-heat transfer equation. A single measure, the range of absorbed powers that gives acceptable tissue temperature distributions, is used to characterize the ability of a given heating technique to heat a given tumor. An acceptable tissue temperature distribution is one for which (a) the temperatures in the coolest regions of the tumor are above a minimum therapeutic value, (b) the temperatures in the hottest regions of the tumor do not exceed a maximum clinically acceptable value, and (c) the normal tissue temperatures do not exceed maximum clinically acceptable levels. This measure can be interpreted directly in clinical terms as the range of power settings on the power indicator of a heating device for which acceptable tumor heatings will occur. This paper describes the basis of the method and investigates the role of tumor blood perfusion patterns in determining the size of the acceptable power range. Three tumor perfusion patterns are investigated: uniform tumor perfusion, a concentric annulli perfusion model in which the tumor consists of a necrotic core surrounded by two concentric layers of increased perfusion, and a random perfusion distribution model. The results show that, in general, the uniform and annular perfusion models serve as bracketing case patterns. That is, they give acceptable power range values that are upper and lower limits of the acceptable power ranges obtained for the random perfusion patterns. The method is applied to heating patterns that simulate those obtained from a variety of different available heating techniques, and it is found to be valid for all cases studied. The role of normal tissue limiting conditions is also investigated.  相似文献   

2.
Several three-dimensional vascular models have been developed to study the effects of adding equations for large blood vessels to the traditional bioheat transfer equation of Pennes when simulating tissue temperature distributions. These vascular models include "transiting" vessels, "supplying" arteries, and "draining" veins, for all of which the mean temperature of the blood in the vessels is calculated along their lengths. For the supplying arteries this spatially variable temperature is then used as the arterial temperature in the bioheat transfer equation. The different vascular models produce significantly different locations for both the maximum tumor and the maximum normal tissue temperatures for a given power deposition pattern. However, all of the vascular models predict essentially the same cold regions in the same locations in tumors: one set at the tumors' corners and another around the inlets of the large blood vessels to the tumor. Several different power deposition patterns have been simulated in an attempt to eliminate these cold regions; uniform power in the tumor, annular power in the tumor, preheating of the blood in the vessels while they are traversing the normal tissue, and an "optimal" power pattern which combines the best features of the above approaches. Although the calculations indicate that optimal power deposition patterns (which improve the temperature distributions) exist for all of the vascular models, none of the heating patterns studied eliminated all of the cold regions. Vasodilation in the normal tissue is also simulated to see its effects on the temperature fields.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Absorption of power in large body volumes can occur with some approaches used for hyperthermia treatment of cancer. A systemic heat absorption rate exceeding the heat dissipation rate can lead to systemic temperature elevation that limits the magnitude and duration of application of power and hence the degree of preferential tumor temperature rise. We describe a hyperthermia approach consisting of regional electromagnetic power absorption and extracorporeal blood cooling with regulation of both systemic heat absorption and dissipation rates ("balanced heat transfer"). A test of this approach in five dogs with nonperfused tumor models demonstrated intratumoral temperatures greater than 42 degrees C, while systemic temperature remained at 33 degrees C and visceral temperatures within the heated region equilibrated between 33 and 42 degrees C. Solutions of the bioheat transfer equation were obtained for a simplified model with a tumor perfusion rate lower than surrounding normal tissue perfusion rate. In this model, the use of arterial blood temperatures less than 37 degrees C allowed higher power densities to be used, for given normal tissue temperatures, than when arterial temperature was greater than or equal to 37 degrees C. As a result, higher intratumoral temperatures were predicted. Control of arterial blood temperature using extracorporeal cooling may thus (1) limit systemic temperature rise produced by regional heating devices and (2) offer a means of improving intratumoral temperature elevations.  相似文献   

4.
During laser-assisted photo-thermal therapy, the temperature of the heated tissue region must rise to the therapeutic value (e.g., 43 °C) for complete ablation of the target cells. Large blood vessels (larger than 500 micron in diameter) at or near the irradiated tissues have a considerable impact on the transient temperature distribution in the tissue. In this study, the cooling effects of large blood vessels on temperature distribution in tissues during laser irradiation are predicted using finite element based simulation. A uniform flow is assumed at the entrance and three-dimensional conjugate heat transfer equations in the tissue region and the blood region are simultaneously solved for different vascular models. A volumetric heat source term based on Beer–Lambert law is introduced into the energy equation to account for laser heating. The heating pattern is taken to depend on the absorption and scattering coefficients of the tissue medium. Experiments are also conducted on tissue mimics in the presence and absence of simulated blood vessels to validate the numerical model. The coupled heat transfer between thermally significant blood vessels and their surrounding tissue for three different tissue-vascular networks are analyzed keeping the laser irradiation constant. A surface temperature map is obtained for different vascular models and for the bare tissue (without blood vessels). The transient temperature distribution is seen to differ according to the nature of the vascular network, blood vessel size, flow rate, laser spot size, laser power and tissue blood perfusion rate. The simulations suggest that the blood flow through large blood vessels in the vicinity of the photothermally heated tissue can lead to inefficient heating of the target.  相似文献   

5.
Jing Liu   《Journal of biomechanics》2001,34(12):1535-1642
An analytical solution to the Pennes bioheat transfer equation in three-dimensional geometry with practical hyperthermia boundary conditions and random heating was obtained in this paper. Uncertainties for the predicted temperatures of tissues due to approximate parameters were studied based on analyzing one-dimensional heat transfer in the biological bodies subject to a spatially decay heating. Contributions from each of the thermal parameters such as heat conductivity, blood perfusion rate, and metabolic rate of the tissues, the scattering coefficient and the surface power flux of the heating apparatus were compared and the uncertainty limit for temperature distribution in this case was estimated. The results are useful in a variety of clinical hyperthermia and biological thermal parameter measurement.  相似文献   

6.
Differences in blood perfusion rates between tumors and normal tissue can be utilized to selectively heat many solid tumors. Blood flow in normal tissues is considerably increased at temperatures commonly applied during localized hyperthermia. In contrast, tumor blood flow may respond to localized heat typically in two different blood flow patterns: Flow may either decrease continuously with increasing exposure time and/or temperature or flow may exhibit a transient increase followed by a decline. A decrease in blood flow at high thermal doses can be observed in most of the tumors, whereas an increase in flow at low thermal doses seems to occur less frequently. The inhibition of blood flow at high thermal doses may lead to physiological changes in the microenvironment of the cancer cells that increase the cell killing effect of hyperthermia. Flow increases at low thermal doses can enhance the efficiency of other treatment modalities, such as irradiation or the administration of antiproliferate drugs.  相似文献   

7.
Current veterinary standards of biomedical research support include refinements in animal models that are targeted at enhancing humane care and decreasing inter-animal variability. This ultimately results in fewer numbers of animals being used and reduction in animal experimentation through mitigation of waste as well as faster research results. 6-hydroxydopamine-lesioning of the substantia nigra using a stereotactic frame device is a common procedure and is routinely performed under pentobarbital anaesthesia with monitoring by 8 h workforces. Our programme supports the humane care and use of several protocols involving the unilateral stereotactic-lesioning of rats for the purposes of creating research models of Parkinsonianism. Such procedures are commonly performed as unilateral in order to minimize aphagia and other untoward effects of the lesion. Generally, this procedure is considered minor because it involves a small incision, a cranial burrhole, and penetration of the dura. Inflammation and/or irritation of the ear canal can occur secondarily to the earbar placement procedure. Human patients undergoing similar procedures typically complain of headaches from loss of intracranial pressure; which is a transient outcome. Despite the perception of minor insult, we provided aggressive periprocedural care, and our veterinary staff documented weight loss that was often greater than 15% body weight during the first 3 days. The goal of this study was to evaluate refinements to improve this outcome. For humane concerns, and because of the need to begin experimental testing one week following surgery, a goal in the recent past has been to enhance outcome for researchers and animals by refining postoperative support modalities as well as by seeking the best anaesthetic regimen to shorten postoperative deviations from baseline. Analysis of three groups of rat patients lesioned by the same investigative group over the course of refinements made in our programme indicate that an early return of homeostasis was achieved by the use of inhalation anaesthetics as replacements for barbiturates in these models. Comparison with pentobarbital recipients also indicated that homeostasis is achieved earlier when barbiturates are utilized with fluid therapy and analgesics immediately after operative procedures rather than the next morning.  相似文献   

8.
Theoretical calculations for the specific absorption rate (SAR) and the resulting temperature distributions produced by an annular phased array (APA)-type system are made. The finite element numerical method is used in the formulation of both the electromagnetic (EM) and thermal boundary value problems. A number of detailed two-dimensional patient models based on CT-scan data from the pelvic, visceral, and thoracic regions are generated to simulate a variety of tumor locations and surrounding normal tissues. The SAR values from the EM solution are put into the bioheat transfer equation, and steady-state temperature distributions are calculated for a wide range of blood flow rates. Based on our theoretical modeling, the APA shows no preferential heating of superficial over deep-seated tumors. However, in most cases for all three regions of the human trunk only fair thermal profiles (therapeutic area near 60%) are obtained in tumors with little or no blood flow and poor temperature patterns (therapeutic area less than 50%) are found in tumors with moderate to high perfusion rates. These theoretical calculations should aid the clinician in the evaluation of the effectiveness of APA-type devices in heating tumors located in the trunk region.  相似文献   

9.
A comparative analysis of thermal blood perfusion measurement techniques   总被引:1,自引:0,他引:1  
The object of this study was to devise a unified method for comparing different thermal techniques for the estimation of blood perfusion rates and to perform a comparison for several common techniques. The approach used was to develop analytical models for the temperature response for all combinations of five power deposition geometries (spherical, one- and two-dimensional cylindrical, and one- and two-dimensional Gaussian) and three transient heating techniques (temperature pulse-decay, temperature step function, and constant-power heat-up) plus one steady-state heating technique. The transient models were used to determine the range of times (the time window) when a significant portion of the transient temperature response was due to blood perfusion. This time window was defined to begin when the difference between the conduction-only and the conduction-plus-blood flow transient temperature (or power) responses exceeded a specified value, and to end when the conduction-plus-blood flow transient temperature (or power) reached a specified fraction of its steady-state value. The results are summarized in dimensionless plots showing the size of the time windows for each of the transient perfusion estimation techniques. Several conclusions were drawn, in particular: (a) low perfusions are difficult to estimate because of the dominance of conduction, (b) large heated regions are better suited for estimation of low perfusions, (c) noninvasive heating techniques are superior because they have the potential to minimize conduction effects, and (d) none of the transient techniques appears to be clearly superior to the others.  相似文献   

10.
近年来,连续型细胞培养由于其高单位体积产量、稳定的产品质量属性以及潜在的成本节约效应正成为生物大分子制药生产的工艺焦点。相比传统的流加培养模式,灌流培养因培养的连续性、操作的复杂性,致使其反应器规模培养需消耗大量培养基,产生更高人力成本,不能满足当今加速化高效化的工艺开发需求。为获得稳健的灌流培养工艺并控制较低成本,高通量灌流培养模型被用于批量化的小规模灌流培养,进行灌流培养前期的克隆筛选、培养基筛选及工艺参数优化等工作,为后期大规模培养提供实用性数据支持,同时也被用于预测大规模培养的细胞表型和产品质量属性。重点介绍了当前高通量系统包括摇瓶/摇管系统、多平行自动化系统以及微流控体系用作灌流培养的特征、具体应用及比较,同时论述当前高通量灌流培养系统在生物工艺领域发展所面临的机遇及挑战,并展望其应用前景。  相似文献   

11.
Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.  相似文献   

12.
Subablative thermotherapy is frequently used for the treatment of joint instability related diseases. In this therapy, mechanically deformed collagenous tissues are thermally shrunk and the stability of the tissue is re-established. In this research, the thermal damage fields generated by three different clinical heating modalities (monopolar and bipolar radio frequency and Ho:YAG laser) are compared numerically using finite element analysis. The heating rate dependent denaturation characteristics of collagenous tissues are incorporated into the model using experimental data from in vitro experimentation with rabbit patellar tendons. It is shown that there are significant differences among the thermal damage profiles created by these modalities, explaining the main reason for the discrepancies reported in the literature in terms of the efficacy and safety of each modality. In the complementary paper, the accuracy of the model presented here is verified by in vitro experimentation with a model collagenous tissue and by quantifying the denaturation-induced birefringence change using Optical Coherence Tomography and Magnetic Resonance Imaging.  相似文献   

13.
Wound healing is a complex pathway that requires cells, an appropriate biochemical environment (i.e., cytokines, chemokines), an extracellular matrix, perfusion, and the application of both macrostrain and microstrain. The process is both biochemically complex and energy dependent. Healing can be assisted in difficult cases through the use of physical modalities. In the current literature, there is much debate over which treatment modality, dosage level, and timing is optimal. The mechanism of action for both electrical stimulation and ultrasound are reviewed along with possible clinical applications for the plastic surgeon.  相似文献   

14.
We consider the thermal response times for heating of tissue subject to nonionizing (microwave or infrared) radiation. The analysis is based on a dimensionless form of the bioheat equation. The thermal response is governed by two time constants: one(τ1) pertains to heat convection by blood flow, and is of the order of 20–30 min for physiologically normal perfusion rates; the second (τ2) characterizes heat conduction and varies as the square of a distance that characterizes the spatial extent of the heating. Two idealized cases are examined. The first is a tissue block with an insulated surface, subject to irradiation with an exponentially decreasing specific absorption rate, which models a large surface area of tissue exposed to microwaves. The second is a hemispherical region of tissue exposed at a spatially uniform specific absorption rate, which models localized exposure. In both cases, the steady-state temperature increase can be written as the product of the incident power density and an effective time constant τeff, which is defined for each geometry as an appropriate function of τ1 and τ2. In appropriate limits of the ratio of these time constants, the local temperature rise is dominated by conductive or convective heat transport. Predictions of the block model agree well with recent data for the thresholds for perception of warmth or pain from exposure to microwave energy. Using these concepts, we developed a thermal averaging time that might be used in standards for human exposure to microwave radiation, to limit the temperature rise in tissue from radiation by pulsed sources. We compare the ANSI exposure standards for microwaves and infrared laser radiation with respect to the maximal increase in tissue temperature that would be allowed at the maximal permissible exposures. A historical appendix presents the origin of the 6-min averaging time used in the microwave standard. Bioelectromagnetics 19:420–428, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
ObjectivesThe objective is to design heating protocols to completely damage PC3 tumors after a single magnetic nanoparticle hyperthermia session with minimal collateral thermal damage, based on microCT image generated tumor and mouse models.MethodsTumor geometries and volumetric heat generation rate distributions that are generated from microCT scans in our previous study are imported into COMSOL 4.3® multiphysics for heat transfer simulations and heating protocol design using the Arrhenius damage model. Then, parametric studies are performed to evaluate how significantly the infusion rate affects the protocol design and its resulted collateral thermal damage.ResultsThe simulated temperature field in the generated tumor geometry and volumetric heat generation rate distribution are reasonable and correlates well with the amount of the total thermal energy deposited into the tumors. The time needed for complete thermal damage is determined to be approximately 12 min or 25 min if one uses the Arrhenius integral Ω equal to 1 or 4 as the damage threshold, when the infusion rate is 3 μL/min. The heating time increases 26% or 91% in the higher infusion rate groups of 4 or 5 μL/min, respectively. Collateral thermal damage to the surrounding tissue is also assessed. Although the two larger infusion rate groups can still cause thermal damage to the entire tumor, the collateral thermal damage would have exceeded the design criterion of 5%, while the assessment criterion is acceptable only in the infusion rate group of 3 μL/min. Based on the results of this study, we identify an injection strategy and heating protocols to be implemented in future animal experiments to evaluate treatment efficacy for model validation.  相似文献   

16.
Electrotherapy with low-level direct current (DC) can induce antitu-mor effects in various tumor models. Applied in combination with certain anticancer drugs, it can significantly increase their effectiveness. It has been suggested that the demonstrated effects of electrotherapy arise from its modification of tumor blood flow. The effect of such treatment on blood perfusion of solid subcutaneous Sa-1 fibrosarcoma tumors in A/J mice was investigated with a 86rubidium extraction technique. Following electrotherapy, the relative tissue perfusion of tumors was decreased by more than 50%. Three days after treatment, partial reperfusion of tumors occurred. The dynamics of the perfusion changes induced by electrotherapy are in agreement with tumor growth dynamics following this procedure. The effect of electrotherapy on the blood supply of tumors may be the major mechanism of antitumor action in our model. Electrotherapy could be useful as an adjuvant local procedure to other treatment modalities that require a hypoxic environment for their effectiveness.  相似文献   

17.
A new warming technique has been developed in a field experimental study of the potential effects of climatic change on N leaching from hill land plant/soil systems. Thermocouple compensating cable has been utilized to provide a small cross-section, flexible, low voltage heating cable, mounted on a framework of stainless steel mesh, to provide uniform heating at the vegetation/soil interface of zero-tension lysimeters and surrounding turf. We describe a specially designed heat controller capable of maintaining a temperature differential of 3 °C above ambient at a soil depth of 0.8 cm. The equipment raises temperatures down the soil profile and within the grass sward, whilst tracking normal diurnal temperature variation. Results presented here illustrate the efficacy of the warming technique, together with the consequences for the release of nitrate from lysimeters. The responses of soil solution concentrations of nitrate varied markedly between soil types, but showed a significant decrease in the brown earth during the first 5 months of additional heating. This suggests that increased nutrient release is masked by plant uptake in this soil, but the responses in the other two soils were less marked.  相似文献   

18.
Two models of hepatic elimination, the distributed sinusoidal perfusion model, and the convection-dispersion model, are extended and then compared for first order kinetics in the steady-state. The sinusoidal perfusion model is extended by the inclusion of intrahepatic sites of mixing between sinusoids. The degree of such mixing is estimated for taurocholate elimination by isolated perfused rat livers by a comparison of anatomical and kinetic estimates of uptake heterogeneity, using previously published data. The dispersion model is generalized by the inclusion of distributions of enzyme activity along the flow. Direct comparison of the two models in the limit in which the degree of dispersion is small, allows the flow-dependence of the dispersion coefficient to be determined, thereby greatly extending the explanatory power of the convection-dispersion model. Finally, the effect of intrahepatic mixing sites on uptake by Michaelis-Menten kinetics is quantified in terms of the distributed sinusoidal perfusion model, with results which may be applicable to capillary beds in general.  相似文献   

19.
With different prevalence in different regions, radio frequency (RF) electromagnetic fields (EMF) are widely used for therapeutic tissue heating. Although short‐wave diathermy (27.12 MHz) is the most popular treatment modality, quantitative data on patient's exposure have been lacking. By numerical simulation with the numerical anatomical model NORMAN, intracorporal distributions of specific absorption rates (SAR) were investigated for different treatment scenarios and applicators. Quantitative data are provided for exposures of target treatment areas as well as for vulnerable regions such as the eye lenses, central nervous system, and testes. Different applicators and distances were investigated. Capacitive and inductive applicators exhibit quite a different heating efficiency. It could be shown that for the same output power therapeutic heat deposition can vary by almost one order of magnitude. By mimicking therapist's practice to use patient's heat perception as an indicator for output power setting, numerical data were elaborated demonstrating that muscle tissue exposures may be several times higher for inductive than for capacitive applicators. Presented quantitative data serve as a guide for power adjustment preventing relevant overexposures without compromising therapy; they also provide a basis for estimating target tissue heat load and developing therapeutic guidelines. Bioelectromagnetics 31:12–19, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Estimating the probability that a species is extinct and the timing of extinctions is useful in biological fields ranging from paleoecology to conservation biology. Various statistical methods have been introduced to infer the time of extinction and extinction probability from a series of individual sightings. There is little evidence, however, as to which of these models provide adequate fit to actual sighting records. We use L-moment diagrams and probability plot correlation coefficient (PPCC) hypothesis tests to evaluate the goodness of fit of various probabilistic models to sighting data collected for a set of North American and Hawaiian bird populations that have either gone extinct, or are suspected of having gone extinct, during the past 150 years. For our data, the uniform, truncated exponential, and generalized Pareto models performed moderately well, but the Weibull model performed poorly. Of the acceptable models, the uniform distribution performed best based on PPCC goodness of fit comparisons and sequential Bonferroni-type tests. Further analyses using field significance tests suggest that although the uniform distribution is the best of those considered, additional work remains to evaluate the truncated exponential model more fully. The methods we present here provide a framework for evaluating subsequent models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号