首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
1. The effect of nitroprusside on cGMP concn., cAMP concn., shape change, aggregation, intracellular free Ca2+ concn. (by quin-2 fluorescence) and Mn2+ entry (by quenching of quin-2) was investigated in human platelets incubated with 1 mM-Ca2+ or 1 mM-EGTA. 2. Nitroprusside (10 nM-10 microM) caused similar concentration-dependent increases in platelet cGMP concn. and was without effect on cAMP concn. in the presence of extracellular Ca2+ or EGTA. 3. In ADP (3-6 microM)-stimulated platelets, nitroprusside caused 50% inhibition of shape change at 0.4 microM (+Ca2+) or 1.3 microM (+EGTA), aggregation at 0.09 microM (+Ca2+) and of increased intracellular Ca2+ at 0.02 microM (+Ca2+) or 2.1 microM (+EGTA). Entry of 1 mM-Mn2+ (-Ca2+) was inhibited by 80% by 5 microM-nitroprusside. 4. In ionomycin (20-500 nM)-stimulated platelets, nitroprusside (10 nM-100 microM) did not inhibit shape change or intracellular-Ca2+-increase responses, and only partially inhibited aggregation. 5. In phorbol myristate acetate (10 nM)-stimulated platelets, neither shape change nor aggregation was inhibited by 5 microM-nitroprusside. 6. The data demonstrate that nitroprusside inhibits ADP-mediated Ca2+ influx more potently than Ca2+ mobilization. Nitroprusside appears not to influence Ca2+ efflux or sequestration and not to affect the sensitivity of the activation mechanism to intracellular Ca2+ concn. or activation of protein kinase C.  相似文献   

2.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

3.
4.
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.  相似文献   

5.
Ca(2+) influx is an important event associated with platelet activation and regulated by the content of intracellular Ca(2+). Previous studies have suggested two different Ca(2+) pools and two Ca(2+) influx pathways exist in platelets. In the present study, we have investigated the regulation of thrombin- and thapsigargin-induced Ca(2+) entry into human platelets, using fluorescent indicators to monitor Ca(2+) mobilization and membrane potential. It was found that depletion of thapsigargin-sensitive Ca(2+) stores was coupled to Ca(2+) influx through a Ca(2+)-selective pathway. Additional release of Ca(2+) from the thapsigargin-insensitive pool by thrombin caused the opening of a nonselective cation channel.  相似文献   

6.
Recently it has been suggested [(1987) Nature 325, 456-458; (1987) FEBS Lett. 212, 123-126] that the activation of Na+/H+ exchange is a prerequisite for platelet aggregation and the development of the Ca2+ signal. As direct evidence for the role of the Na+/H+-exchange pathway the inhibition of the Ca2+ signal by EIPA, a specific inhibitor of Na+/H+ exchange, was offered. Here we demonstrate that low concentrations of EIPA (below 1 microM) completely block Na+/H+ exchange while EIPA inhibits aggregation or Ca2+ mobilization only in concentrations 100-times greater than 1 microM. Moreover, another amiloride analogue, CBDMB, developed to act predominantly on Na+/Ca2+ exchange, does not affect Na+/H+ exchange in platelets but blocks aggregation and Ca2+ mobilization. We conclude that while Na+/H+ exchange has a fundamental role in platelet functions it is not prerequisite for the development of Ca2+ signal and aggregation.  相似文献   

7.
1. The rate of 45Ca2+ efflux from prelabelled rat islets of Langerhans was stimulated by carbachol in a dose-dependent manner. 2. Significant stimulation occurred in the presence of 0.2 microM-carbachol; the response was half-maximal at 3-5 microM and was maximal at 20 microM. 3. Stimulation of 45Ca2+ efflux by carbachol was not dependent on the presence of extracellular Ca2+ and was enhanced in Ca2+-depleted medium. 4. Stimulation of 45Ca2+ efflux by 5 microM-carbachol occurred independently of any change in [3H]arachidonic acid release in prelabelled islets, and probably reflected generation of inositol trisphosphate in the cells. 5. The amphipathic peptide melittin failed to increase islet-cell 45Ca2+ efflux at a concentration of 1 microgram/ml, and caused only a modest increase at 10 micrograms/ml. 6. Despite its failure to increase 45Ca2+ efflux, melittin at 1 microgram/ml caused a marked enhancement of 3H release from islets that had been prelabelled with [3H]arachidonic acid. 7. The stimulation of 3H efflux caused by melittin correlated with a dose-dependent increase in the unesterified [3H]arachidonic acid content of prelabelled islets and with a corresponding decrease in the extent of labelling of islet phospholipids. 8. Combined addition of melittin (1 microgram/ml) and 5 microM-carbachol to perifused islets failed to augment 45Ca2+ efflux relative to that elicited by carbachol alone. 9. The data indicate that melittin promotes an increase in arachidonic acid availability in intact rat islets. They do not, however, support the proposal that this can either directly reproduce or subsequently modify the extent of intracellular Ca2+ mobilization induced by agents that cause an increase in inositol trisphosphate.  相似文献   

8.
Stopped-flow fluorimetric studies at 37 degrees C have shown that ADP, at optimal concentrations, can evoke Ca2+ or Mn2+ influx in fura-2-loaded human platelets without measurable delay. In contrast, the release of Ca2+ from intracellular stores is delayed in onset by about 200 ms. By working at a lower temperature, 17 degrees C, we have now shown that the rise in cytosolic calcium concentration ([Ca2+]i) evoked by ADP in the presence of external Ca2+ is biphasic. The use of Mn2+ as a tracer for bivalent-cation entry indicates that both phases of the ADP-evoked response are associated with influx. The fast phase of the ADP-evoked rise in [Ca2+]i, which occurs without measurable delay at both 17 degrees C and 37 degrees C, is consistent with Ca2+ entry mediated by receptor-operated channels in the plasma membrane. The delayed phase, indicated by Mn2+ quench, is coincident with the discharge of the intracellular Ca2+ stores. Forskolin did not inhibit the fast phases of ADP-evoked rise in [Ca2+]i or Mn2+ quench, but completely abolished ADP-evoked discharge of the intracellular stores, the delayed phase of the rise in [Ca2+]i observed in the presence of external Ca2+ and the second phase of Mn2+ quench. The timing of the delayed event appears to be modulated by [Ca2+]i: the delayed phase of Mn2+ quench coincides with discharge of the intracellular stores in the absence of added Ca2+, but with the second phase of the ADP-evoked rise in [Ca2+]i in the presence of extracellular Ca2+. Similarly, blockade of the early phase of Ca2+ entry by SK&F 96365 further delays the second phase. It is suggested that a pathway for Ca2+ entry which is regulated by the intracellular Ca2+ store exists in platelets. This pathway operates alongside, and appears to be modulated by the activity of other routes for Ca2+ entry into the cytosol.  相似文献   

9.
Activation of human platelets by diverse receptor-transduced signals is followed by an intracellular calcium increase. Calcium liberation from an inositol 1,4,5-trisphosphate-sensitive compartment is recognized to be one of the prime events, followed by further mechanisms to amplify the signal. Among these, the formation of prostaglandin endoperoxides and thromboxane A2 are part of the self-amplificating activation system. Two inhibitors of intracellular Ca(2+)-ATPases, thapsigargin and 2,5-di-(tert-butyl)-1,4-benzohydroquinone have been reported to deplete the intracellular inositol 1,4,5-trisphosphate-responsive stores. In human platelets with EGTA present, we found that these inhibitors of the microsomal Ca2+ sequestration generate quite different Ca2+ transients due to an inherent cyclooxygenase inhibition by the benzohydroquinone derivative compared to thapsigargin, and, therefore, only one-half of the fura-2 signal is generated. For a maximal calcium release, Ca(2+)-ATPase inhibitors depend on the self-amplification system involving thromboxane formation. Following the thapsigargin-induced [Ca2+]i transient, thrombin was unable to raise [Ca2+]i, indicating that thapsigargin mobilizes calcium from the thrombin-responsive store, as long as the self-amplifying system of platelets is intact. With the thromboxane receptor blocked, thapsigargin releases only one-half of the calcium, and, hence, thrombin was able to release additional calcium. Interestingly, in the converse experiment, thrombin did not prevent a raise of [Ca2+]i by thapsigargin at all, although applying thrombin a second time was without any effect. Therefore, we propose two calcium pools in human platelets: receptor activation transiently releases calcium from an inositol-sensitive pool including the thapsigargin-sensitive compartment, followed by reuptake within minutes. Sequestration occurs into the thapsigargin-sensitive compartment from where it can be released even when the endoperoxide/thromboxane receptor is blocked. Calcium release from both compartments allows the formation of thromboxane B2, but not if only the Ca(2+)-ATPase inhibitor-sensitive pool is emptied. In the presence of a protonophor, a calcium accumulation in the Ca(2+)-ATPase-sensitive pool could be observed.  相似文献   

10.
Control and cholesterol-depleted human erythrocytes were loaded with permeant Ca2+ chelators (Benz2-AM or Quin2-AM) in order to increase their exchangeable Ca2+ pool and to measure both Ca2+ fluxes and [Ca]i (free cytoplasmic calcium concentration). The fluxes were independent of the concentration and of the nature of the intracellular chelator. The ATP content was not decreased by more than 50% under our experimental conditions. Cholesterol depletion (up to 28%) induced a decrease in both Ca2+ fluxes and [Ca]i which was proportional to the extent of the depletion. It is shown that cholesterol depletion primarily altered the properties of the system responsible for Ca2+ entry causing a diminution of the [Ca]i. This, in turn, induced a diminution of the activity of the Ca2+ pump without affecting the properties of this pump.  相似文献   

11.
We characterized the collagen-induced increase in cytosolic Ca2+ ([Ca2+]i) of bovine platelets loaded with the Ca2+ indicator Fura-PE3/AM. Collagen (10 micrograms/ml)-induced increase in [Ca2+]i was only partially inhibited by aspirin, a cyclooxygenase inhibitor, or adenosine 3'-phosphate 5'-phosphosulfate (A3P5PS, a P2Y1 receptor antagonist), while in human platelets it was almost completely suppressed by aspirin. Collagen-induced increase in [Ca2+]i of bovine platelets was inhibited by U73122 (0.3-5 microM), a phospholipase C inhibitor. Collagen (10 micrograms/ml) increased production of inositol 1,4,5-trisphosphate, which was prevented by pretreatment with U73122 (5 microM). Collagen (10 micrograms/ml) accelerated Mn2+ entry, since the rate of Fura-PE3 quenching by Mn2+ was enhanced by 13-fold following stimulation with collagen. U73122 inhibited the acceleration of Mn2+ entry induced by collagen. PGE1 (2.5 microM) partially inhibited the collagen (50 micrograms/ml)-induced increase in [Ca2+]i in bovine platelets but not in human platelets. The data suggest that collagen-induced Ca2+ mobilization in bovine platelets is mediated by phospholipase C. The Ca2+ mobilization in bovine platelets is different from that in human ones as to the dependency on arachidonic acid metabolites and sensitivity to PGE1.  相似文献   

12.
One current hypothesis for the initiation of Ca2+ entry into nonelectrically excitable cells proposes that Ca2+ entry is linked to the state of filling of intracellular Ca2+ stores. In the human T lymphocyte cell line Jurkat, stimulation of the antigen receptor leads to release of Ca2+ from internal stores and influx of extracellular Ca2+. Similarly, treatment of Jurkat cells with the tumor promoter thapsigargin induced release of Ca2+ from internal stores and also resulted in influx of extracellular Ca2+. Initiation of Ca2+ entry by thapsigargin was blocked by chelation of Ca2+ released from the internal storage pool. The Ca2+ entry pathway also could be initiated by an increase in the intracellular concentration of Ca2+ after photolysis of the Ca(2+)-cage, nitr-5. Thus, three separate treatments that caused an increase in the intracellular concentration of Ca2+ initiated Ca2+ influx in Jurkat cells. In all cases, Ca(2+)-initiated Ca2+ influx was blocked by treatment with any of three phenothiazines or W-7, suggesting that it is mediated by calmodulin. These data suggest that release of Ca2+ from internal stores is not linked capacitatively to Ca2+ entry but that initiation is linked instead by Ca2+ itself, perhaps via calmodulin.  相似文献   

13.
We have studied the effects of thrombin (0.1 U/ml) on intracellular Ca2+ ([Ca2+]i) and pH (pHi) in human platelets loaded with fluorescent indicators. Thrombin produced a transient decrease of pHi which reached its maximum within 15-25 seconds (s) and was followed by a sustained alkalinization which brought pHi above the resting value. [Ca2+]i increased transiently peaking at 5-10 s. The late alkalinization induced by thrombin was antagonized by ethylisopropylamiloride, an inhibitor of Na+-H+ exchange, and by sphingosine, an inhibitor of protein kinase C, with little effect on the [Ca2+]i transient. The early acidification was not inhibited by these treatments. We conclude tha the thrombin-induced changes of [Ca2+]i and pHi are mediated by different mechanisms. The late alkalinization is due to activation of Na+/H+ exchange mediated by protein kinase C and, contrarily to previous proposals (Siffert, W. and Akkerman, J.W.N. (1987) Nature 325, 456-458), it is not necessary for calcium mobilization from intracellular stores.  相似文献   

14.
Phorbol ester PMA and low concentrations of calcium ionophore A-23187, which given separately have minimal effect in stimulating thromboxane synthesis in human platelets, showed marked synergism when given simultaneously. A similar synergism can be also demonstrated between thrombin or collagen and low concentrations of A-23187 but not of PMA. Simultaneous addition of thrombin and PMA results in less synthesis of thromboxane than that of thrombin alone. These studies suggest that protein kinase C activation by agonists may not only induce but also regulate thromboxane synthesis in human platelets.  相似文献   

15.
By incubating platelets at low temperature (10 degrees C), the relationship between Ca2+ mobilization and formation of inositol 1,4,5-trisphosphate (IP3) in thrombin stimulated platelets could be precisely investigated. In the presence of 1 mM EGTA, time dependent changes in the intracellular free calcium concentration [( Ca2+]i) were closely related to those in IP3 formation. Time course of the influx of external Ca2+, estimated by delta [Ca2+]i obtained by subtracting [Ca2+]i in the presence of 1 mM EGTA from that in the presence of 1 mM CaCl2 was also very similar to that of IP3 formed. Furthermore, the increase in delta [Ca2+]i was extremely well correlated with the amount of IP3 formed (Y = 49X - 34, r = 0.99). Thus, these data indicate that IP3 might be involved not only in intracellular Ca2+ mobilization but in Ca2+ influx of human platelets stimulated by thrombin.  相似文献   

16.
Intracellular calcium fluxes in human platelets   总被引:2,自引:0,他引:2  
Fluorescence changes and secretory responses have been measured on addition of various excitatory agonists to platelets loaded with the cytosolic Ca2+ probe, Quin 2 or with chlortetracycline as a probe for membrane-associated Ca2+. When extracellular [Ca2+] is decreased to less than 0.1 microM by addition of EGTA a linear correlation is observed between the extent of increase in cytosolic [Ca2+] and the extent of mobilisation of membrane-associated Ca2+ on stimulation by maximal doses of five excitatory agonists. A similar linear correlation between the increase in cytosolic [Ca2+] and the extent of ATP secretion is observed over the thrombin dose/response curve. Similar EC50 values are observed for ATP secretion, the increase in cytosolic [Ca2+] and the decrease in chlortetracycline fluorescence induced by thrombin. However, the decrease in chlortetracycline fluorescence shows a sigmoidal relationship with the increase in cytosolic [Ca2+] and a hyperbolic relationship with ATP secretion over this dose/response curve. Addition of prostaglandin D2 prior to thrombin causes parallel inhibition of the increase in cytosolic [Ca2+] and the decrease in chlortetracycline fluorescence induced by this agonist. However, addition of prostaglandin D2 after thrombin reverses the increase in cytosolic [Ca2+] induced by this agonist but fails to cause a similar reversal of the decrease in chlortetracycline fluorescence. The data provide further evidence supporting the proposal that chlortatracycline can be used as a probe to monitor mobilisation of membrane-associated Ca2+ but suggest that, in platelets stimulated in the effective absence of extracellular Ca2+, both Ca2+ mobilisation and Ca2+ removal can under some conditions involve sites which are not monitored by this probe.  相似文献   

17.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

18.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

19.
Gangliosides, highly expressed in the outer leaflet of plasmamembranes, mediate a variety of biological processes, includingcell-cell and cell-matrix interactions. We examined the effectsof exogenous gangliosides on intracellular Ca2+ mobilizationand functional responses in human platelets. Gangliosides (GM3and GM1) induced rapid and reversible elevation of intracellularCa2+ in fura2-loaded platelets in a concentration-dependentmanner. The Ca2+mobilizing effect of gangliosides was not mimickedby de-N-acetyl-GM3, lactosylceramide, or free sialic acid, suggestingthat structural integrity as ganglioside is essential for thiseffect. GM3 and GM1 also induced platelet shape change by themselvesand elicited aggregation in combination with epinephrine. Ourobservations suggest the involvement of ganglioside-activatedplatelets in atherosclerosis, in view of the high observed gangliosidelevels in atherosclerotic lesions of human aorta. de-N-acetyl-GM3 ganglioside GM3 intracellular Ca2+ mobilization platelet activation  相似文献   

20.
Protein phosphatase 1 is considered to be involved in thrombin-induced platelet activation (Murata et al., Biochem Int 26:327–334, 1992). To clarify the mechanism, we examined the effects of protein phosphatase 1 and 2A inhibitors (calyculin A, tautomycin, okadaic acid) on Ca2+ influx. In the presence of 1 mM Ca2+, thrombin- (0.1 U/ml) induced platelet aggregation and ATP release were inhibited by calyculin A, while this inhibitory effect was abolished in the absence of Ca2+ (EGTA 1 mM). Furthermore, thrombin-induced Mn2+ influx but not intracellular Ca2+ mobilization was inhibited by calyculin A in a dose-related manner. Calyculin A also blocked the ongoing Ca2+ influx when added 3 min after thrombin stimulation. Similar inhibitory effects were observed with okadaic acid and tautomycin in the same potency sequence as the reported one for protein phosphatase 1 (calyculin A > tautomycin > okadaic acid). These results suggest that the anti-platelet effects of phosphatase inhibitors are due to the inhibition of Ca2+ influx and that protein phosphatase 1 plays a key role in the regulation of receptor operated Ca2+ channel of human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号