首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distal portion of the short arm of the human X chromosome (Xp) exhibits many unique and interesting features. Distal Xp contains the pseudoautosomal region, a number of disease loci, and several cell-surface markers. Several genes in this area have also been observed to escape X-chromosomal inactivation. The characterization of new polymorphic loci in this region has permitted the construction of a refined multipoint linkage map extending 15 cM from the Xp telomere. This interval is known to contain the loci for the diseases X-linked ichthyosis, chondrodysplasia punctata, and Kallmann syndrome, as well as the cell-surface markers Xg and 12E7. This region also contains the junction between the pseudoautosomal region and strictly X-linked sequences. The locus MIC2 has been demonstrated by linkage analysis to be indistinguishable from the pseudoautosomal junction. The steroid sulfatase locus has been mapped to an interval adjacent to the DXS278 locus and 6 cM from the pseudoautosomal junction. The polymorphic locus (STS) DXS278 was shown to be informative in all families studied, and linkage analysis reveals that the locus represents a low-copy repeat with at least one copy distal to the STS gene. The generation of a multipoint linkage map of distal Xp will be useful in the genetic dissection of many of the unique features of this region.  相似文献   

2.
X M Li  P H Yen    L J Shapiro 《Nucleic acids research》1992,20(5):1117-1122
There are several copies of related sequences on the distal short arm of the human X chromosome and the proximal long arm of the Y chromosome which were originally detected by cross hybridization with a genomic DNA clone, CRI-S232. Recombination between two S232-like sequences flanking the steroid sulfatase locus has been shown to cause frequent deletions in the X chromosome short arm, resulting in steroid sulfatase deficiency. We now report the characterization of several S232-like sequences. Restriction mapping and sequence analysis show that each S232 unit contains 5 kb of unique sequence in addition to two elements, RU1 and RU2, composed of a variable number of tandem repeats. RU1 consists of 30 bp repeating units and its length shows minimal variation between individuals. The RU2 elements in the hypervariable S232 loci on the X chromosome consist of repeating sequences which are highly asymmetric, with about 90% purines and no C's on one strand. The X-derived RU2 elements range from 0.6 kb to over 23 kb among different individuals, accounting entirely for the observed polymorphism at the S232 loci. Although the repeating units of the RU2 elements in the nonpolymorphic S232 loci on the Y chromosome share high sequence homology with those on the X chromosome, they exhibit much higher intrarepeat sequence variation. S232 homologous sequences are found in great apes, old world and new world monkeys. In chimpanzees and gorillas the S232-like sequences are polymorphic in length.  相似文献   

3.
Long-range physical mapping around the human steroid sulfatase locus   总被引:4,自引:0,他引:4  
M T Ross  A Ballabio  I W Craig 《Genomics》1990,6(3):528-539
The region of the human X chromosome containing the steroid sulfatase locus was analyzed by pulsed-field gel electrophoresis. Restriction site maps were generated for the X chromosome in the blood of a normal male individual and that in the mouse-human hybrid cell line ThyB-X; these maps extend over approximately 4.3 Mb of DNA of the former, and 3.2 Mb of the latter. Physical linkage was defined between the STS locus and sequences detected by the probes GMGX9 (DXS237), GMGXY19 (DYS74), CRI-S232 (DXS278), and dic56 (DXS143), and the order telomere--(STS, DYS74)--DXS237--DXS278--DXS143--centromere was deduced. The pulsed-field maps were used to demonstrate a deletion of 180 kb of DNA from the X chromosome of an individual with X-linked ichthyosis. Also, possible locations for the Kallmann syndrome gene were revealed, and the distance between the steroid sulfatase locus and the pseudoautosomal region was estimated to be at least 4 Mb.  相似文献   

4.
Summary Ten families with nephrogenic diabetes insipidus (NDI) have been analysed for restriction fragment length polymorphisms (RFLPs). A search for linkage was performed using various chromosome-specific single-copy DNA probes of known regional assignment to the human X chromosome. Close linkage was found between the disease locus and the markers DXS52, DXS15, DXS134 and the F8 gene. This result assigns the NDI gene to the subtelomeric region of the long arm of the X chromosome. The regional localization of the gene by the identification of closely linked markers should have repercussions for genetic counselling and prevention in NDI families.  相似文献   

5.
To assess the possible association between aberrant recombination and XY chromosome nondisjunction, we compared pseudoautosomal region recombination rates in male meiosis resulting in 47,XXY offspring with those resulting in 46,XY and 46,XX offspring. Forty-one paternally derived 47,XXYs and their parents were tested at six polymorphic loci spanning the pseudoautosomal region. We were able to detect crossing-over in only six of 39 cases informative for the telomeric DXYS14/DXYS20 locus. Subsequently, we used the data to generate a genetic linkage map of the pseudoautosomal region and found it to be significantly shorter than the normal male map of the region. From these analyses we conclude that most paternally derived 47,XXYs result from meiosis in which the X and Y chromosomes did not recombine.  相似文献   

6.
Two males with a 46,Y,der(X),t(X;Y)(p22.3;q11) complement were referred independently for evaluation of sterility with azoospermia. Both patients exhibited minimal symptomatology, characterized only by psychological disturbances. Study of X-chromosome breakpoints with pseudoautosomal probes 68B (DXYZ2 elements), 113D (locus DXYS15), and 19B (locus MIC2) indicated in both patients that at least 97% of the X pseudoautosomal sequences are lost. Hybridization with Xp22.3-specific probes DXS283, DXS284, and DXS31 shows that these loci are retained on the rearranged chromosome. Thus, the X-chromosome breakpoints are located close to the proximal boundary of the pseudoautosomal region, between MIC2 and DXS284.  相似文献   

7.
Short stature is consistently found in individuals with terminal deletions of Xp. In order to refine the localization of a putative locus affecting height, we analyzed two patients with a partial monosomy of the pseudoautosomal region at the molecular level. Eight pseudoautosomal probes were used for the genetic deletion analysis through dose evaluation. Three of them represent new markers (DXS415, DXS419, and DXS406) which were positioned on the pseudoautosomal map by pulsed field gel electrophoresis. Our data suggest that a locus affecting height maps in a region of about 1.5 Mbp, distal to the DXS406 locus and proximal to the DXS415 locus, a region which includes two CpG islands, and rule out an involvement of very distal sequences at the X/Y telomeres.  相似文献   

8.
9.
Choroideremia (McK30310), an X-linked hereditary retinal dystrophy, causes night-blindness, progressive peripheral visual field loss, and, ultimately, central blindness in affected males. The location of choroideremia on the X chromosome is unknown. We have used restriction fragment length polymorphisms from the X chromosome to determine the regional localization of choroideremia by linkage analysis in families with this disease. One such polymorphic locus, DXYS1, located on the long arm (Xq) within bands q13-q21, shows no recombination with choroideremia at lod = 5.78. Therefore, with 90% probability, choroideremia maps within 9 centiMorgans (cM) of DXYS1. Another polymorphic locus, DXS11, located within Xq24-q26, also shows no recombination with choroideremia, although at a smaller lod score of 1.54 (90% probability limit theta less than 30 cM). This linkage with DXS11, a marker that is distal to DXYS1, suggests that the locus for choroideremia is also distal to DXYS1 and lies between these two markers in the region Xq13-q24. These results provide regional mapping for the disease that may be useful for prenatal diagnosis and, perhaps ultimately, for isolating the gene locus for choroideremia.  相似文献   

10.
An X linked human DNA fragment (named DXS31 ) which detects partially homologous sequences on the Y chromosome has been isolated. Regional localisation of the two sex linked sequences was determined using a panel of rodent-human somatic cell hybrids. The X specific sequence is located at the tip of the short arm ( Xp22 .3-pter), i.e. within or close to the region which pairs with the Y chromosome short arm at meiosis. However the Y specific sequence is located in the heterochromatic region of the long arm ( Yq11 -qter) and lies outside from the pairing region. DNAs from several XX male subjects were probed with DXS31 and in all cases a double dose of the X linked fragment was found, and the Y specific fragment was absent. DXS31 detects in chimpanzee a male-female differential pattern identical to that found in man. However results obtained in a more distantly related species, the brown lemur, suggest that the sequences detected by DXS31 in this species might be autosomally coded. The features observed with these X-Y related sequences do not fit with that expected from current hypotheses of homology between the pairing regions of the two sex chromosomes, nor with the pattern observed with other X-Y homologous sequences recently characterized. Our results suggest also that the rule of conservation of X linkage in mammals might not apply to sequences present on the tip of the X chromosome short arm, in bearing with the controversial issue of steroid sulfatase localisation in mouse.  相似文献   

11.
In this study, we describe a pentaplex PCR to determine the parental origin of the X chromosome and the presence of mosaicism, via amplification of four polymorphic markers located along the X chromosome (DXS10011, DXS6807, HUMARA, DXS101) and the X-Y amelogenin marker, in 41 families having a daughter with Turner Syndrome. Our results confirmed the cytogenetic findings and we found that the parental origin of the single X chromosome to be maternal in 84% of cases.  相似文献   

12.
Summary In two unrelated families, males have been identified who suffer from choroideremia and at the same time have an interstitial deletion on the proximal long arm of the X chromosome. By high-resolution banding we have characterized the deletion chromosomes as del(X)(q21.1-q21.33) and del(X)(q21.2-q21.31) respectively. By Southern blot analysis we have mapped ten different polymorphic DNA loci relative to the position of the deletion and the choroideremia locus TCD. One probe, p31, was shown to cover one of the breakpoints of the smallest deletion. The following order of the loci was suggested by deletion mapping: cen-DXS106-DXS72-TCD-(DXYS1/DXYS23/DXYS5)-DXYS2-(DXYS12/DXS3)-(DXS17/DXS101)-Xqter.  相似文献   

13.
A DNA probe detecting multiple haplotypes of the human Y chromosome.   总被引:16,自引:8,他引:16       下载免费PDF全文
We have characterized a DNA probe (49f) that detects about 15 Y-specific TaqI bands corresponding to a low-copy number sequence. Five of these bands, each representing a single DNA fragment, can either be present, absent, or variable in length. Familial segregation studies have shown that the variations of these fragments are inherited in a Mendelian fashion and strictly Y-linked. A survey of 44 male individuals indicated that the five variable TaqI fragments detected by probe 49f can be considered as five independent allelic series. Each series represents the different and mutually exclusive allelic forms observed for a single DNA fragment. A total of 16 haplotypes, each defined by a different combination of the various forms of each of these five restriction fragment length polymorphisms, were observed among the 44 scored individuals. These TaqI restriction polymorphisms are not observed with other restriction digests and have therefore been attributed to point mutations. The five polymorphic fragments map to Yq11, a region that does not recombine with the X chromosome and are therefore not redistributed. This implies that an apparently independent reassortment of one of these series with respect to the others can be explained only on the basis of mutations that occurred several times (or reverted) during evolution of the Y chromosome. However, an examination of the different combinations of two or more allelic series suggests that some alleles are not randomly distributed and raises the possibility of establishing a genealogy of the human Y chromosome.  相似文献   

14.
Human Xq28 is highly gene dense with over 27 loci. Because most of these genes have been mapped by linkage to polymorphic loci, only one of which (DXS52) is informative in most families, a search was conducted for new, highly polymorphic Xq28 markers. From a cosmid library constructed using a somatic cell hybrid containing human Xq27.3----qter as the sole human DNA, a human-insert cosmid (c346) was identified and found to reveal variation on Southern blot analyses with female DNA digested with any of several different restriction endonucleases. Two subclones of c346, p346.8 and p346.T, that respectively identify a multiallelic VNTR locus and a frequent two-allele TaqI polymorphism were isolated. Examination of 21 unrelated females showed heterozygosity of 76 and 57%, respectively. These two markers appeared to be in linkage equilibrium, and a combined analysis revealed heterozygosity in 91% of unrelated females. Families segregating the fragile X syndrome with key Xq28 crossovers position this locus (designated DXS455) between the proximal Xq28 locus DXS296 (VK21) and the more distal locus DXS374 (1A1), which is proximal to DXS52. DXS455 is therefore the most polymorphic locus identified in Xq28 and will be useful in the genetic analysis of this gene dense region, including the diagnosis of nearby genetic disease loci by linkage.  相似文献   

15.
We report the identification of a new RFLP detected by the DNA probe MN12, which is linked to both the fragile site on the X chromosome at Xq27.3 and the highly polymorphic locus detected by St14 (DXS52). In situ mapping confirms the localisation of MN12 distal to the fragile site. A detailed physical analysis of this region of the X chromosome using pulsed-field gel electrophoresis has shown that MN12, St14 and DX13 (DXS15) are physically linked within a region of 470kb. A long range restriction map around the MN12 locus reveals at least two candidate HTF islands, suggesting the existence of expressed sequences in this region.  相似文献   

16.
In this study, we report an accurate method to determine the parental origin of sex chromosome aneuploidies or polyploidies and to detect low percentage mosaicisms. We have amplified by polymerase chain reaction (PCR) five polymorphic markers along the X chromosome (DXS1283E, DYS II, DMD49, AR and DXS52) and three markers along the Y chromosome (SRY, DYZ3 and DYZ1). False-negative results were discarded by the simultaneous amplification of Y markers and of internal controls. We have applied this protocol to a series of 14 Turner syndrome patients with a 45,X karyotype. We have detected sex chromosome mosaicisms in two patients. The parental origin of the syndrome has been determined in the other 12 patients.  相似文献   

17.
X-linked nonspecific mental retardation (MRX) has a frequency of 0.15% in the male population and is caused by defects in several different genes on the human X chromosome. Genotype-phenotype correlations in male patients with a partial nullisomy of the X chromosome have suggested that at least one locus involved in MRX is on Xp22.3. Previous deletion mapping has shown that this gene resides between markers DXS1060 and DXS1139, a region encompassing approximately 1.5 Mb of DNA. Analyzing the DNA of 15 males with Xp deletions, we were able to narrow this MRX critical interval to approximately 15 kb of DNA. Only one gene, VCX-A (variably charged, X chromosome mRNA on CRI-S232A), was shown to reside in this interval. Because of a variable number of tandem 30-bp repeats in the VCX-A gene, the size of the predicted protein is 186-226 amino acids. VCX-A belongs to a gene family containing at least four nearly identical paralogues on Xp22.3 (VCX-A, -B, -B1, and -C) and two on Yq11.2 (VCY-D, VCY-E), suggesting that the X and Y copies were created by duplication events. We have found that VCX-A is retained in all patients with normal intelligence and is deleted in all patients with mental retardation. There is no correlation between the presence or absence of VCX-B1, -B, and VCX-C and mental status in our patients. These results suggest that VCX-A is sufficient to maintain normal mental development.  相似文献   

18.
A compound (AC)n repeat located 1,000 bp downstream from the human synapsin I gene and within the last intron of the A-raf-1 gene has been identified. DNA data-base comparisons of the sequences surrounding the repeat indicate that the synapsin I gene and the A-raf-1 gene lie immediately adjacent to each other, in opposite orientation. PCR amplification of this synapsin I/A-raf-1 associated repeat by using total genomic DNA from members of the 40 reference pedigree families of the Centre d'Etude du Polymorphisme Humaine showed it to be highly polymorphic, with a PIC value of .84 and a minimum of eight alleles. Because the synapsin I gene has been mapped previously to the short arm of the human X chromosome at Xp11.2, linkage analysis was performed with markers on the proximal short arm of the X chromosome. The most likely gene order is DXS7SYN/ARAF1TIMPDXS255DXS146, with a relative probability of 5 x 10(8) as compared with the next most likely order. This highly informative repeat should serve as a valuable marker for disease loci mapped to the Xp11 region.  相似文献   

19.
Summary The q26–q28 region of the human X chromosome contains several important disease loci, including the locus for the fragile X mental retardation syndrome. We have characterized new polymorphic DNA markers useful for the genetic mapping of this region. They include a new BclI restriction fragment length polymorphism (RFLP) detected by the probe St14-1 (DXS52) and which may therefore be of diagnostic use in hemophilia A families. A linkage analysis was performed in fragile X families and in large normal families from the Centre d'Etude du Polymorphisme Humain (CEPH) by using seven polymorphic loci located in Xq26-q28. This multipoint linkage study allowed us to establish the order centromere-DXS100-DXS86-DXS144-DXS51-F9-FRAX-(DXS52-DXS15). Together with other studies, our results define a cluster of nine loci that are located in Xq26-q27 and map within a 10 to 15 centimorgan region. This contrasts with the paucity of markers (other than the fragile X locus) between the F9 gene in q27 and the G6PD cluster in q28, which are separated by about 30% recombination.  相似文献   

20.
Summary We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号