首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In Saccharomyces cerevisiae, the COX5a and COX5b genes constitute a small gene family that encodes two forms of cytochrome c oxidase subunit V, Va and Vb, either of which can provide a function essential for cytochrome c oxidase activity and respiration. In aerobically grown wild-type yeast cells, Va is the predominant form of subunit V. The COX5b gene alone does not produce enough Vb to support a respiration rate sufficient to allow growth on nonfermentable carbon sources. By selecting for mutations that increase the respiratory capacity of a strain deleted for COX5a, we have identified a gene that is involved in negative regulation of COX5b expression under aerobic growth conditions. Each of four independently isolated reo1 mutations are shown to be recessive, unlinked to COX5b, but dependent on COX5b for phenotypic expression. The mutations define a single complementation and linkage group: designated as REO1 for regulator of expression of oxidase. reo1 mutations increase expression of COX5b in aerobically grown cells, but not in anaerobically grown cells, where expression is already elevated. These mutations have no effect on COX5a, the other member of this small gene family which is positively regulated by heme and oxygen. The REO1 gene does play a role in repression of ANB1, a gene that is normally repressed under aerobic but not anaerobic conditions. Neither rox1 or rox3 mutations, which have previously been shown to increase ANB1 expression, are in the same complementation group as reo1 mutations.  相似文献   

4.
The COX6 gene encodes subunit VI of cytochrome c oxidase. Previously, this gene and its mRNAs were characterized, and its expression has been shown to be subject to glucose repression/derepression. In this study we have examined the effects of heme and the HAP1 (CYP1) and HAP2 genes on the expression of COX6. By quantitating COX6 RNA levels and assaying beta-galactosidase activity in yeast cells carrying COX6-lacZ fusion genes, we have found that COX6 is regulated positively by heme and HAP2, but is unaffected by HAP1. Through 5' deletion analysis we have also found that the effects of heme and HAP2 on COX6 are mediated by sequences between 135 and 590 base pairs upstream of its initiation codon. These findings identify COX6 as the fourth respiratory protein gene that is known to be regulated positively by heme and HAP2. The other three, CYC1, COX4, and COX5a, encode iso-1-cytochrome c, cytochrome c oxidase subunit IV, and an isolog, Va, of cytochrome c oxidase subunit V, respectively. Thus, it appears that the biogenesis of two interacting proteins, cytochrome c and cytochrome c oxidase, in the mitochondrial respiratory chain, are under the control of common factors.  相似文献   

5.
Little is presently known about the nuclear-encoded genes for cytochrome c oxidase (COX) in higher plants. In rice, only the nuclear-encoded COX5b gene has been reported. To understand the relationship between the expression of nuclear-encoded and mitochondrial-encoded COX genes in rice, we first characterized a cDNA encoding one of the other nuclear COX genes, COX5c, which encodes 63 amino acids. The deduced amino acid sequence of COX5c from rice was highly homologous to that from sweet potato. Genomic Southern hybridization indicated that the rice COX5c subunit is encoded by a single copy of the COX5c gene. Furthermore, we compared the expression patterns of the nuclear-encoded COX5c and COX5b genes with the expression pattern of the mitochondrial-encoded COX1 gene among several organs by Northern blot analysis. The results suggested that regulatory systems of expression between the nuclear-encoded and the mitochondrial-encoded COX genes are different among different organs in rice.  相似文献   

6.
The gene for yeast cytochrome c oxidase subunit V, COX5, has been isolated from a Saccharomyces cerevisiae DNA library by complementation of a cytochrome c oxidase subunit V mutant, JM28. One complementing plasmid, YEp13-511, with a DNA insert of 4.8 kilobase pairs, has been characterized in detail. This plasmid restores respiratory competency in JM28, results in increased cytochrome c oxidase activity and a new form of subunit V in JM28 mitochondria, and is capable of selecting mRNA for subunit V. These results indicate that YEp13-511 carries the COX5 gene and that the subunit V encoded by this plasmid gene is capable of entering the mitochondrion and assembling into a functional holocytochrome c oxidase.  相似文献   

7.
One of the nuclear-coded subunits of yeast cytochrome c oxidase is specified by a gene family composed of two genes, COX5a and COX5b. These genes are regulated differentially by oxygen and encode isoforms of subunit V, designated Va and Vb, which have only 66% primary sequence identity. Yeast cells require one or the other isoform for a functional cytochrome c oxidase (Trueblood, C. E., and Poyton, R. O. (1987) Mol. Cell Biol. 7, 3520-3526). To determine if these isoforms of subunit V alter the catalytic properties of holocytochrome c oxidase, we have analyzed various aspects of cytochrome c oxidase function in intact yeast cells that produce only one type of isoform. From measurements of room temperature turnover numbers and low temperature rates of ligand binding, single turnover cytochrome c oxidation, and internal electron transfer (heme a oxidation), we have found that isozymes which incorporate the Vb isoform have both higher turnover rates and higher rates of heme a oxidation than isozymes which incorporate Va. These findings support the conclusion that the isoforms of subunit V modulate cytochrome c oxidase activity in vivo and suggest that they do so by altering the rates of one or more intramolecular electron transfer reactions.  相似文献   

8.
9.
To identify nuclear functions required for cytochrome c oxidase biogenesis in yeast, recessive nuclear mutants that are deficient in cytochrome c oxidase were characterized. In complementation studies, 55 independently isolated mutants were placed into 34 complementation groups. Analysis of the content of cytochrome c oxidase subunits in each mutant permitted the definition of three phenotypic classes. One class contains three complementation groups whose strains carry mutations in the COX4, COX5a, or COX9 genes. These genes encode subunits IV, Va, and VIIa of cytochrome c oxidase, respectively. Mutations in each of these structural genes appear to affect the levels of the other eight subunits, albeit in different ways. A second class contains nuclear mutants that are defective in synthesis of a specific mitochondrial-encoded cytochrome c oxidase subunit (I, II, or III) or in both cytochrome c oxidase subunit I and apocytochrome b. These mutants fall into 17 complementation groups. The third class is represented by mutants in 14 complementation groups. These strains contain near normal amounts of all cytochrome c oxidase subunits examined and therefore are likely to be defective at some step in holoenzyme assembly. The large number of complementation groups represented by the second and third phenotypic classes suggest that both the expression of the structural genes encoding the nine polypeptide subunits of cytochrome c oxidase and the assembly of these subunits into a functional holoenzyme require the products of many nuclear genes.  相似文献   

10.
The mitochondrial genomes of Chlamydomonad algae lack the cox2 gene that encodes the essential subunit COX II of cytochrome c oxidase. COX II is normally a single polypeptide encoded by a single mitochondrial gene. In this work we cloned two nuclear genes encoding COX II from both Chlamydomonas reinhardtii and Polytomella sp. The cox2a gene encodes a protein, COX IIA, corresponding to the N-terminal portion of subunit II of cytochrome c oxidase, and the cox2b gene encodes COX IIB, corresponding to the C-terminal region. The cox2a and cox2b genes are located in the nucleus and are independently transcribed into mRNAs that are translated into separate polypeptides. These two proteins assemble with other cytochrome c oxidase subunits in the inner mitochondrial membrane to form the mature multi-subunit complex. We propose that during the evolution of the Chlorophyte algae, the cox2 gene was divided into two mitochondrial genes that were subsequently transferred to the nucleus. This event was evolutionarily distinct from the transfer of an intact cox2 gene to the nucleus in some members the Leguminosae plant family.  相似文献   

11.
12.
13.
We investigated the expressions of genes for alternative oxidase (AOX1a, AOX1b, AOX1c and AOX2) and genes for cytochrome c oxidase (COX5b and COX6b) during germination of Arabidopsis thaliana, and examined oxygen uptakes of the alternative respiration and the cytochrome respiration in imbibed Arabidopsis seeds. A Northern blot analysis showed that AOX2 mRNA has already accumulated in dry seeds and subsequently decreased, whereas accumulation ofAOX1a mRNA was less abundant from 0 hours to 48 hours after imbibition and then increased. The increase of the capacity of the alternative pathway appeared to be dependent on the expressions of both AOX2 and AOX1a. On the other hand, steady-state mRNA levels of COX5b and COX6b were gradually increased during germination, and the capacity of the cytochrome pathway was correlated with the increase of expressions of the COX genes. Antimycin A, the respiratory inhibitor, strongly increased the expression of AOX1a but had no effect on the expression of AOX2. A 5'RACE analysis showed that AOX2 consists of five exons, which is different from the case of most AOX genes identified so far. Analysis of subcellular localization of AOX2 using green fluorescent protein indicated that the AOX2 protein is imported into the mitochondria.  相似文献   

14.
The promoter sequences required for expression of the Arabidopsis thaliana COX5b-2 gene, encoding an isoform of cytochrome c oxidase subunit 5b, were analyzed using plants transformed with deleted and mutagenized forms of the promoter fused to gus . A 1000-bp promoter fragment produces expression in root and shoot meristems, leaf and cotyledon tips, and anthers. Deletion analysis indicated the presence of positive and negative regulatory elements. A regulatory element located between −660 and −620 from the translation start site was identified as a G-box by mutagenic analysis. Mutation of the G-box, that is present within the coding region of the preceding gene in the genome, increases expression of COX5b-2 in cotyledon and leaf lamina and abolishes induction by ultraviolet-B (UV-B) light, which presumably acts through the removal of an inhibitory factor. Identified positive regulatory elements include a site II element (TGGGCC), a related element with the sequence TGGGTC and four initiator elements (YTCANTYY) that completely abolish expression when mutated in combination. Site II elements are also involved in the response to sucrose. The results imply that the COX5b-2 gene has retained expression characteristics presented by most respiratory chain component genes, but its expression mechanisms have diverged from those employed by COX5b-1 , the other gene encoding cytochrome c oxidase subunit 5b in Arabidopsis.  相似文献   

15.
A nuclear pet mutant of Saccharomyces cerevisiae that is defective in the structural gene for subunit V of cytochrome c oxidase has been identified and used to clone the subunit V gene (COX5) by complementation. This mutant, E4-238 [24], and its revertant, JM110, produce variant forms of subunit V. In comparison to the wild-type polypeptide (Mr = 12,500), the polypeptides from E4-238 and JM110 have apparent molecular weights of 9,500 and 13,500, respectively. These mutations directly alter the subunit V structural gene rather than a gene required for posttranslational processing or modification of subunit V because they are cis-acting in diploid cells; that is, both parental forms of subunit V are produced in heteroallelic diploids formed from crosses between the mutant, revertant, and wild type. Several plasmids containing the COX5 gene were isolated by transformation of JM28, a derivative of E4-238, with DNA from a yeast nuclear DNA library in the vector YEp13. One plasmid, YEp13-511, with a DNA insert of 4.8 kilobases, was characterized in detail. It restores respiratory competency and cytochrome oxidase activity in JM28, encodes a new form of subunit V that is functionally assembled into mitochondria, and is capable of selecting mRNA for subunit V. The availability of mutants altered in the structural gene for subunit V (COX5) and of the COX5 gene on a plasmid, together with the demonstration that plasmid-encoded subunit V is able to assemble into a functional holocytochrome c oxidase, enables molecular genetic studies of subunit V assembly into mitochondria and holocytochrome c oxidase.  相似文献   

16.
Two genes encoding cytochrome c oxidase subunits, Cox2a and Cox2b, are present in the nuclear genomes of apicomplexan parasites and show sequence similarity to corresponding genes in chlorophycean algae. We explored the presence of COX2A and COX2B subunits in the cytochrome c oxidase of Toxoplasma gondii. Antibodies were raised against a synthetic peptide containing a 14-residue fragment of the COX2A polypeptide and against a hexa-histidine-tagged recombinant COX2B protein. Two distinct immunochemical stainings localized the COX2A and COX2B proteins in the parasite's mitochondria. A mitochondria-enriched fraction exhibited cyanide-sensitive oxygen uptake in the presence of succinate. T. gondii mitochondria were solubilized and subjected to Blue Native Electrophoresis followed by second dimension electrophoresis. Selected protein spots from the 2D gels were subjected to mass spectrometry analysis and polypeptides of mitochondrial complexes III, IV and V were identified. Subunits COX2A and COX2B were detected immunochemically and found to co-migrate with complex IV; therefore, they are subunits of the parasite's cytochrome c oxidase. The apparent molecular mass of the T. gondii mature COX2A subunit differs from that of the chlorophycean alga Polytomella sp. The data suggest that during its biogenesis, the mitochondrial targeting sequence of the apicomplexan COX2A precursor protein may be processed differently than the one from its algal counterpart.  相似文献   

17.
18.
Subunit VIIa of yeast cytochrome c oxidase is a small (59 amino acids) protein of the inner mitochondrial membrane that lacks a cleavable amino-terminal presequence. To identify regions within this polypeptide that are essential for its import, gene fusions were constructed using a leader peptide substitution vector (pLPS) developed in this laboratory (Glaser, S. M., Trueblood, C. E., Dircks, L. K., Poyton, R. O., and Cumsky, M. G. (1988) J. Cell. Biochem. 36, 275-287). In this vector, oligonucleotide sequences encoding all or part of subunit VIIa were fused in-frame with the coding region of mature cytochrome c oxidase subunit Va. The plasmid pLPS is ideal for assaying protein sequences for their ability to direct mitochondrial import in vivo since subunit Va's leader peptide is essential for import and because subunit V is required for cytochrome c oxidase activity and respiration. Strains containing these fusions but lacking both subunit V genes (COX5a and COX5b) were analyzed to determine whether the chimeric protein is directed to mitochondria. Our findings indicate that the amino-terminal 17 amino acids of subunit VIIa are sufficient to localize subunit Va to the mitochondrion and that a 6-amino acid-long region within the amino terminus (Gly8-Arg13) is essential. In addition, some import (approximately 10% of wild type) is observed with the highly charged carboxyl terminus of subunit VIIa, suggesting that the subunit may contain redundancy in its import information.  相似文献   

19.
Cytochrome c oxidase or complex IV, catalyzes the final step in mitochondrial electron transfer chain, and is regarded as one of the major regulation sites for oxidative phosphorylation. This enzyme is controlled by both nuclear and mitochondrial genomes. Among its 13 subunits, three are encoded by mitochondrial DNA and ten by nuclear DNA. In this work, an RNA interference approach was taken which led to the generation of mouse A9 cell derivatives with suppressed expression of nuclear-encoded subunit IV (COX IV) of this complex. The amounts of this subunit are decrease by 86% to 94% of normal level. A detail biosynthetic and functional analysis of several cell lines with suppressed COX IV expression revealed a loss of assembly of cytochrome c oxidase complex and, correspondingly, a reduction in cytochrome c oxidase-dependent respiration and total respiration. Furthermore, dysfunctional cytochrome c oxidase in the cells leads to a compromised mitochondrial membrane potential, a decreased ATP level, and failure to grow in galactose medium. Interestingly, suppression of COX IV expression also sensitizes the cells to apoptosis. These observations provide the evidence of the essential role of the COX IV subunit for a functional cytochrome c oxidase complex and also demonstrate a tight control of cytochrome c oxidase over oxidative phosphorylation. Finally, our results further shed some insights into the pathogenic mechanism of the diseases caused by dysfunctional cytochrome c oxidase complex.  相似文献   

20.
J. J. Mulero  T. D. Fox 《Genetics》1993,133(3):509-516
PET111 is a yeast nuclear gene specifically required for the expression of the mitochondrial gene COX2, encoding cytochrome c oxidase subunit II (coxII). Previous studies have shown that PET111 activates translation of the COX2 mRNA. To map the site of PET111 action we have constructed, in vitro, genes coding for chimeric mRNAs, introduced them into mitochondria by transformation and studied their expression. Translation of a chimeric mRNA with the 612-base 5'-untranslated leader of the COX3 mRNA fused precisely to the structural gene for the coxII-precursor protein is independent of PET111, but does require a COX3 mRNA-specific translational activator known to work on the COX3 5'-leader. This result demonstrates that PET111 is not required for any posttranslational step. Translation of a chimeric mRNA with the 54-base 5'-leader of the COX2 mRNA fused precisely to the structural gene for cytochrome c oxidase subunit III was dependent on PET111 activity. These results demonstrate that PET111 acts specifically at a site in the short COX2 5'-leader to activate translation of downstream coding sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号