首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The nucleotide sequence (56,410 base-pairs) of the large single-copy region of chloroplast DNA from the liverwort Marchantia polymorpha has been determined. The sequence starts from one end (JLA) of the large single-copy region and encompasses genes for 21 tRNAs, six ATPase subunits (atpA, atpB, atpE, atpF, atpH and atpI), two photosystem I polypeptides (psaA and psaB), four photosystem II polypeptides (psbA, psbC, psbD and psbG), five ribosomal proteins (rps2, rps4, rps7, rps'12 and rps14), and three RNA polymerase subunits (rpoB, rpoC1 and rpoC2). In addition, we detected 18 open reading frames ranging from 29 to 2136 amino acid residues long, four of which share significant amino acid sequence homology to those of an Escherichia coli malK protein (designated mbpX), human mitochondrial ND2 (ndh2) and ND3 (ndh3) of a respiratory chain NADH dehydrogenase, or a bacterial antenna protein of a light-harvesting complex (lhcA). Sequence analysis suggests that four tRNA genes and six protein genes might be split by introns; they are trnG(UCC), trnK(UUU), trnL(UAA), trnV(UAC), atpF, ndh2, rpoC1, rps'12, ORF135 and ORF167. In the large single-copy region described here, the gene organization deduced is highly conserved with respect to that of higher plants, but an inversion of some 30,000 base-pairs flanked by trnL(CAA) and trnD(GUC) was seen between the liverwort and tobacco chloroplast genomes.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Nucleotide sequence polymorphisms of the intron of the chloroplast trnK (UUU) gene, including a matK gene, were investigated within two wild Fagopyrum species, F. leptopodum and F. statice, to assess the degree and pattern of the inter- and intraspecific differences in coding and noncoding chloroplast DNA regions in higher plants. Ten and five accessions were used for F. leptopodum and F. statice, respectively. The length of the trnK intron region in these species ranged from 2494 to 2506 bp. In the trnK intron, the net nucleotide substitution number per site (Da) between the two species was 0.00109, lower than the nucleotide diversity (pi), 0.00195 for F. leptopodum and 0.00144 for F. statice, suggesting a low level of interspecific divergence. This result seems to be due to the phylogenetic pattern that both species are interspersed with each other, which was revealed by the phylogenetic analyses based on the nucleotide substitutions and indels. In the matK gene region (1524 bp), seven and two nucleotide substitutions were found within F. leptopodum and F. statice, respectively. All of the nine nucleotide substitutions (eight of which were nonsynonymous) within and between F. leptopodum and F. statice were clustered in the 5' part of the matK gene region, and no variation was found in the 3' part. This suggests that most of the 3' part is occupied by the conserved domains that are important for the binding activity of the gene product to the precursor mRNA, and therefore implies that the 3' part is more functionally constrained than the 5' part.  相似文献   

16.
17.
18.
19.
X Li  P Palese 《Journal of virology》1994,68(2):1245-1249
It has been shown that a stretch of uridines (U's) near the 5' end of the virion RNA of influenza A virus is the polyadenylation site for viral mRNA synthesis. In addition, the RNA duplex made up the 3' and 5' terminal sequences adjacent to the U stretch is also involved in polyadenylation. We have further characterized the polyadenylation signal of influenza virus RNA with a ribonucleoprotein transfection system. We found that the optimal length of the U stretch is 5 to 7 uridine residues. We also showed that the upstream sequence at the 5' end is not involved in polyadenylation and that the optimal distance between the 5' end and the U stretch is 16 nucleotides. The combination of these features defines the polyadenylation site and differentiates this signal from other U stretches scattered throughout the genomes of influenza viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号