首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol in the plasma membrane of eukaryotic cells contributes to modulating the functions and signalling pathways of numerous transmembrane proteins, including G protein Coupled Receptors (GPCRs). We have previously shown that the function of the human µ-opioid receptor (hMOR) expressed in Saccharomyces cerevisiae is modulated by sterols including cholesterol. Here, we investigated the effects of cholesterol content on hMOR pharmacology and on hMOR partitioning in cholesterol-poor and -rich domains in eukaryotic mammalian cells (CHO). We show that cholesterol is required for the stabilization of a receptor conformation with high agonist affinity and for triggering G-protein activation after agonist binding to the receptor. Biochemical analysis of untreated and cholesterol-depleted membranes in cells expressing hMOR indicated that the receptor is only present in cholesterol poor domains, in the basal state. After agonist binding to untreated CHO membranes, two distinct populations of receptor were found in cholesterol-rich and -poor domains. Cholesterol depletion or treatment of CHO membranes with the G-protein-decoupling agent GppNHp prevented the redistribution, indicating that receptor activated states localized into cholesterol-rich domains. Pharmacological data and biochemical analysis indicate that distinct activated conformations of hMOR exist in CHO plasma membrane and correspond to microdomains differing by thickness and proportions of lipid components, including cholesterol.  相似文献   

2.
Cholesterol in the plasma membrane of eukaryotic cells contributes to modulating the functions and signalling pathways of numerous transmembrane proteins, including G protein Coupled Receptors (GPCRs). We have previously shown that the function of the human micro-opioid receptor (hMOR) expressed in Saccharomyces cerevisiae is modulated by sterols including cholesterol. Here, we investigated the effects of cholesterol content on hMOR pharmacology and on hMOR partitioning in cholesterol-poor and -rich domains in eukaryotic mammalian cells (CHO). We show that cholesterol is required for the stabilization of a receptor conformation with high agonist affinity and for triggering G-protein activation after agonist binding to the receptor. Biochemical analysis of untreated and cholesterol-depleted membranes in cells expressing hMOR indicated that the receptor is only present in cholesterol poor domains, in the basal state. After agonist binding to untreated CHO membranes, two distinct populations of receptor were found in cholesterol-rich and -poor domains. Cholesterol depletion or treatment of CHO membranes with the G-protein-decoupling agent GppNHp prevented the redistribution, indicating that receptor activated states localized into cholesterol-rich domains. Pharmacological data and biochemical analysis indicate that distinct activated conformations of hMOR exist in CHO plasma membrane and correspond to microdomains differing by thickness and proportions of lipid components, including cholesterol.  相似文献   

3.
Membrane cholesterol dynamics: cholesterol domains and kinetic pools   总被引:10,自引:0,他引:10  
Nonreceptor mediated cholesterol uptake and reverse cholesterol transport in cells occur through cellular membranes. Thus, elucidation of cholesterol dynamics in membranes is essential to understanding cellular cholesterol accumulation and loss. To this end, it has become increasingly evident that cholesterol is not randomly distributed in either model or biologic membranes. Instead, membrane cholesterol appears to be organized into structural and kinetic domains or pools. Cholesterol-rich and poor domains can even be observed histochemically and physically isolated from epithelial cell surface membranes. The physiologic importance of these domains is 2-fold: (i) Select membrane proteins (receptors, transporters, etc.) are localized in either cholesterol-rich or cholesterol-poor domains. Consequently, the structure and properties of the domains rather than of the bulk lipid may selectively affect the function of proteins residing therein. (ii) Kinetic evidence suggests that cholesterol transport through and between membranes may occur through specific domains or pools. Regulation of the size and properties of such domains may be controlling factors of cholesterol transport or accumulation in cells. Recent technologic advances in the use of fluorescent sterols have allowed examination of cholesterol domain structure in model and biologic membranes. These techniques have been applied to examine the role of high-density lipoprotein, cholesterol lowering drugs, and intracellular lipid transfer proteins in membrane sterol domain structure and sterol movement between membranes.  相似文献   

4.
Although lipid-rich microdomains of hepatocyte plasma membranes serve as the major scaffolding regions for cholesterol transport proteins important in cholesterol disposition, little is known regarding intracellular factors regulating cholesterol distribution therein. On the basis of its ability to bind cholesterol and alter hepatic cholesterol accumulation, the cytosolic liver type FA binding protein (L-FABP) was hypothesized to be a candidate protein regulating these microdomains. Compared with wild-type hepatocyte plasma membranes, L-FABP gene ablation significantly increased the proportion of cholesterol-rich microdomains. Lack of L-FABP selectively increased cholesterol, phospholipid (especially phosphatidylcholine), and branched-chain FA accumulation in the cholesterol-rich microdomains. These cholesterol-rich microdomains are important, owing to enrichment therein of significant amounts of key transport proteins involved in uptake of cholesterol [SR-B1, ABCA-1, P-glycoprotein (P-gp), sterol carrier binding protein (SCP-2)], FA transport protein (FATP), and glucose transporters 1 and 2 (GLUT1, GLUT2) insulin receptor. L-FABP gene ablation enhanced the concentration of SCP-2, SR-B1, FATP4, and GLUT1 in the cholesterol-poor microdomains, with functional implications in HDL-mediated uptake and efflux of cholesterol. Thus L-FABP gene ablation significantly impacted the proportion of cholesterol-rich versus -poor microdomains in the hepatocyte plasma membrane and altered the distribution of lipids and proteins involved in cholesterol uptake therein.  相似文献   

5.
Published data related to both cell membrane biology and apolipoprotein structure are reviewed and used to formulate a new model describing the mechanisms of cholesterol efflux from cell plasma membrane to high density lipoprotein (HDL) particles. The central premise of this model is the existence of heterogenous domains of cholesterol within plasma membranes. We propose that cholesterol efflux from cell membranes is influenced by three factors: 1) the distribution of cholesterol between cholesterol-rich and cholesterol-poor membrane domains, 2) the diffusion of cholesterol molecules through the extracellular unstirred water layer, and 3) the transient interaction of segments of the amphipathic helix of the HDL apolipoprotein with cholesterol-poor membrane domains resulting in enhanced cholesterol efflux.  相似文献   

6.
Lipid rafts are often considered as microdomains enriched in sphingomyelin and cholesterol, predominantly residing in the plasma membrane but which originate in earlier compartments of the cellular secretory pathway. Within this pathway, the membranes of the Golgi complex represent a transition stage between the cholesterol-poor membranes of the endoplasmic reticulum (ER) and the cholesterol-rich plasma membrane. The rafts are related to detergent-resistant membranes, which because of their ordered structure are poorly penetrated by cold non-ionic detergents and float in density gradient centrifugation. In this study the microdomain niche of the Golgi-resident SPCA Ca2+/Mn2+ pumps was investigated in HT29 cells by Triton X-100 detergent extraction and density-gradient centrifugation. Similarly to cholesterol and the raft-resident flotillin-2, SPCA1 was found mainly in detergent-resistant fractions, while SERCA3 was detergent-soluble. Furthermore, cholesterol depletion of cells resulted in redistribution of flotillin-2 and SPCA1 to the detergent-soluble fractions of the density gradient. Additionally, the time course of solubilization by Triton X-100 was investigated in live COS-1 and HT29 cells expressing fluorescent SERCA2b, SPCA1d or SPCA2. In both cell types, the ER-resident SERCA2b protein was gradually solubilized, while SPCA1d resisted to detergent solubilization. SPCA2 was more sensitive to detergent extraction than SPCA1d. To investigate the functional impact of cholesterol on SPCA1, ATPase activity was monitored. Depletion of cholesterol inhibited the activity of SPCA1d, while SERCA2b function was not altered. From these results we conclude that SPCA1 is associated with cholesterol-rich domains of HT29 cells and that the cholesterol-rich environment is essential for the functioning of the pump.  相似文献   

7.
The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with beta-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than to intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.  相似文献   

8.
The effect of agents disrupting cholesterol-rich microdomains of the cell membrane was studied on the chemoattractant receptor (FPR and FRPL1) coupled effector responses of promyelocytic PLB-985 cells. Both methyl-beta-cyclodextrin (MbetaCD) and filipin III inhibited exocytosis of primary granules and O(2)(.-) production induced by stimulation of either chemotactic receptor. Alteration of calcium homeostasis of MbetaCD-treated cells does not account for the impairment of the effector responses. Disruption of microfilaments by cytochalasin B (CB) partially reverses the inhibitory effect of cholesterol depletion. Our results provide functional support for the involvement of cholesterol-rich membrane domains in the signaling of chemotactic receptors and call the attention to the possible role of microfilaments in the organization of lipid microdomains.  相似文献   

9.
The oxytocin receptor, a class A G protein coupled receptor (GPCR), is essentially involved in the physiology of reproduction. Two parameters are crucially important to support high-affinity agonist binding of the receptor: Mg2+ and cholesterol, both acting as positive modulators. Using displacement assays with a high-affinity fluorescent antagonist (OTAN-A647), we now show that sodium functions as a negative allosteric modulator of the oxytocin receptor. In membranes from HEK293 cells stably expressing the oxytocin receptor, oxytocin binding occurred with about 15-fold lower affinity when sodium chloride was increased from 0 to 300 mM, whereas antagonist binding remained largely unchanged. The effect was concentration-dependent, sodium-specific, and it was also observed for oxytocin receptors endogenously expressed in Hs578T breast cancer cells. A conserved Asp (Asp 85) is known to stabilize the sodium binding site in other GCPRs. Mutations of this residue into Ala or Asn are known to yield non-functional oxytocin receptors. When Asp 85 was exchanged for Glu, most of the oxytocin receptors were localized in intracellular structures, but a faint plasma membrane labeling with OTAN-A647 and the appearance of oxytocin-induced calcium responses indicated that these receptors were functional. However, a sodium effect was not detectable for the mutant D85E oxytocin receptors. Thus, the oxytocin receptor is allosterically controlled by sodium similar to other GPCRs, but it behaves differently concerning the involvement of the conserved Asp 85. In case of the oxytocin receptor, Asp 85 is obviously essential for proper localization in the plasma membrane.  相似文献   

10.
Cholesterol-rich membrane domains function in various membrane events as diverse as signal transduction and membrane traffic. We studied the interaction of a fluorescein ester of polyethylene glycol-derivatized cholesterol (fPEG-Chol) with cholesterol-rich membranes both in cells and in model membranes. Unlike filipin and other cholesterol probes, this molecule could be applied as an aqueous dispersion to various samples. When added to live cells, fPEG-Chol distributed exclusively in the outer plasma membrane leaflet and was enriched in microdomains that dynamically clustered by the activation of receptor signaling. The surface-bound fPEG-Chol was slowly internalized via clathrin-independent pathway into endosomes together with lipid raft markers. Noteworthy, fPEG-Chol could be microinjected in the living cells in which we found Golgi apparatus as the sole major organelle to be labeled. PEG-Chol, thus, provides a novel, sensitive probe for unraveling the dynamics of cholesterol-rich microdomains in living cells.  相似文献   

11.
Cyclodextrins (CDs) are cyclic oligosaccharides composed of a lipophilic central cavity and a hydrophilic outer surface. Some CDs are capable of extracting cholesterol from cell membranes and can affect function of receptors and proteins localized in cholesterol-rich membrane domains. In this report, we demonstrate the neuroprotective activity of some CD derivatives against oxygen-glucose deprivation (OGD), N-methyl-D-aspartic acid (NMDA) and glutamate in cortical neuronal cultures. Although all CDs complexed with NMDA or glutamate, only beta-, methylated beta- and sulfated beta-CDs displayed neuroprotective activity and lowered cellular cholesterol. Only CDs that lowered cholesterol levels redistributed the NMDA receptor NR2B subunit, PSD-95 (postsynaptic density protein 95 kDa) and neuronal nitric oxide synthase (nNOS) from Triton X-100 insoluble membrane domains to soluble fractions. Cholesterol repletion counteracted the ability of methylated beta-CD to protect against NMDA toxicity, and reversed NR2B, PSD-95 and nNOS localization to Triton X-100 insoluble membrane fraction. Surprisingly, neuroprotective CDs had minimal effect on NMDA receptor-mediated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), but did suppress OGD-induced increases in [Ca(2+)](i). beta-CD, but not Mbeta-CD, also caused a slight block of NMDA-induced currents, suggesting a minor contribution to neuroprotection by direct action on NMDA receptors. Taken together, data suggest that cholesterol extraction from detergent-resistant microdomains affects NMDA receptor subunit distribution and signal propagation, resulting in neuroprotection of cortical neuronal cultures against ischemic and excitotoxic insults. Since cholesterol-rich membrane domains exist in neuronal postsynaptic densities, these results imply that synaptic NMDA receptor subpopulations underlie excitotoxicity, which can be targeted by CDs without affecting overall neuronal Ca(2+) levels.  相似文献   

12.
To determine the localization of the amyloid precursor protein (APP) on the cellular membrane, we performed membrane fractionation of cultured cells including that of Madin-Darby canine kidney (MDCK) and P19 cells transfected with human APP cDNA, non-transfected SH-SY5Y cells, and rat cerebral cortices. In MDCK cells, APP was exclusively present in abundance in the supernatant following solubilization of the plasma membranes using Triton X-100, and in high-density fractions of sucrose density gradient fractionation (SDGF) following Triton X-100 solubilization of whole cellular membranes. Caveolin-1 was not cofractionated with APP. In experiments using P19 cells and rat cerebral cortices, we detected two isoforms of APP. The APP with the apparently lower molecular weight (immature type) coexisted in abundance with integrin in the high-density fractions, whereas the APP with the apparently higher molecular weight (mature type) was recovered predominantly in the low-density fractions with cholesterol and GM1 gangliosides, the concentrations of which were higher than those in the bulk plasma membranes, but lower than those in caveolae-like domains (CLDs), following SDGF of Triton X-100-solubilized cellular membranes. The results of this study suggest the following; first, APP is not present in abundance in caveolae or CLDs, but is in unique cholesterol-rich microdomains; second, the targeting of APP to these unique microdomains may be linked to the maturation of APP in some cells.  相似文献   

13.
The function of the oxytocin receptor system is strongly dependent on steroids as demonstrated by several physiological studies. One key element of this dependence on steroids may be the interaction of cholesterol and the oxytocin receptor. In this study, we show that cholesterol stabilizes the solubilized human oxytocin receptor against thermal inactivation and proteolytic degradation. In the absence of additional cholesterol, the soluble receptor inactivates within minutes. Maximal stabilization of the oxytocin receptor requires a continuous supply with cholesterol from a cholesterol-rich environment. A structure-activity analysis of various cholesterol analogues and their effect on the thermal stability of the oxytocin receptor showed that the stabilizing function of cholesterol was highly specific. The structural requirements of a potent stabilizing steroid are very similar to those necessary to support the high-affinity state of the receptor. Moreover, in the presence of cholesterol, the oxytocin receptor is significantly more stable against alterations of pH value (pH 4-12). The results show that cholesterol acts as a general stabilizer of the oxytocin receptor.  相似文献   

14.
The function of the oxytocin receptor system is strongly dependent on steroids as demonstrated by several physiological studies. One key element of this dependence on steroids may be the interaction of cholesterol and the oxytocin receptor. In this study, we show that cholesterol stabilizes the solubilized human oxytocin receptor against thermal inactivation and proteolytic degradation. In the absence of additional cholesterol, the soluble receptor inactivates within minutes. Maximal stabilization of the oxytocin receptor requires a continuous supply with cholesterol from a cholesterol-rich environment. A structure-activity analysis of various cholesterol analogues and their effect on the thermal stability of the oxytocin receptor showed that the stabilizing function of cholesterol was highly specific. The structural requirements of a potent stabilizing steroid are very similar to those necessary to support the high-affinity state of the receptor. Moreover, in the presence of cholesterol, the oxytocin receptor is significantly more stable against alterations of pH value (pH 4-12). The results show that cholesterol acts as a general stabilizer of the oxytocin receptor.  相似文献   

15.
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.  相似文献   

16.
Vesicles of phosphatidylcholine/cholesterol mixtures show a wide composition range with coexistence of two fluid phases, the 'liquid disordered' (cholesterol-poor) and 'liquid ordered' (cholesterol-rich) phases. These systems have been widely used as models of membranes exhibiting lateral heterogeneity (membrane domains). The distributions of two fluorescent probes (a fluorescent cholesterol analog, NBD-cholesterol, and a lipophilic rhodamine probe, octadecylrhodamine B) in dimyristoylphosphatidylcholine/cholesterol vesicles were studied, at 30 degrees C and 40 degrees C. The steady-state fluorescence intensity of both probes decreases markedly with increasing cholesterol concentration, unlike the fluorescence lifetimes. The liquid ordered to liquid disordered phase partition coefficients K(p) were measured, and values much less than unity were obtained for both probes, pointing to preference for the cholesterol-poor phase. Globally analyzed time-resolved energy transfer results confirmed these findings. It is concluded that, in particular, NBD-cholesterol is not a suitable cholesterol analog and its distribution behavior in phosphatidylcholine/cholesterol bilayers is in fact opposite to that of cholesterol.  相似文献   

17.
Gaining an understanding of the structural and functional roles of cholesterol in membrane lipid rafts is a critical issue in studies on cellular signaling and because of the possible involvement of lipid rafts in various diseases. We have focused on the potential of perfringolysin O (theta-toxin), a cholesterol-binding cytolysin produced by Clostridium perfringens, as a probe for studies on membrane cholesterol. We prepared a protease-nicked and biotinylated derivative of perfringolysin O (BCtheta) that binds selectively to cholesterol in cholesterol-rich microdomains of cell membranes without causing membrane lesions. Since the domains fulfill the criteria of lipid rafts, BCtheta can be used to detect cholesterol-rich lipid rafts. This is in marked contrast to filipin, another cholesterol-binding reagent, which binds indiscriminately to cell cholesterol. Using BCtheta, we are now searching for molecules that localize specifically in cholesterol-rich lipid rafts. Recently, we demonstrated that the C-terminal domain of perfringolysin O, domain 4 (D4), possesses the same binding characteristics as BCtheta. BIAcore analysis showed that D4 binds specifically to cholesterol with the same binding affinity as the full-size toxin. Cell-bound D4 is recovered predominantly from detergent-insoluble, low-density membrane fractions where raft markers, such as cholesterol, flotillin and Src family kinases, are enriched, indicating that D4 also binds selectively to lipid rafts. Furthermore, a green fluorescent protein-D4 fusion protein (GFP-D4) was revealed to be useful for real-time monitoring of cholesterol in lipid rafts in the plasma membrane. In addition, the expression of GFP-D4 in the cytoplasm might allow the investigations of intracellular trafficking of lipid rafts. The simultaneous visualization of lipid rafts in plasma membranes and inside cells might help in gaining a total understanding of the dynamic behavior of lipid rafts.  相似文献   

18.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   

19.
Design, synthesis and characterization of CHAPSTEROL, a novel cholesterol-based detergent developed for functional solubilization of cholesterol-dependent membrane proteins are described. To validate CHAPSTEROL, we employed the oxytocin receptor, a G protein-coupled receptor requiring cholesterol for its high-affinity binding state. Using the photoactivatable cholesterol analogue [3H]6,6-azocholestan-3beta-ol[3alphaH], we demonstrate that solubilization by CHAPSTEROL leads to an enrichment of cholesterol-binding proteins whereas the widely used bile acid derivative CHAPSO leads to a significant depletion of cholesterol-binding proteins. Similar to Triton X-100 and CHAPS, CHAPSTEROL maintains the localization of caveolin as well as cholesterol and sphingomyelin to lipid rafts, i.e. detergent-insoluble microdomains of the plasma membrane. The data suggest that CHAPSTEROL is an appropriate detergent for the solubilization of cholesterol-dependent membrane proteins and isolation of rafts.  相似文献   

20.
Receptors involved in the phagocytosis of microorganisms under nonopsonic conditions have been little studied in neutrophils. Complement receptor type 3 (CR3) is a pattern recognition receptor able to internalize zymosan and C3bi-coated particles. We report that Abs directed against CR3 strongly inhibited nonopsonic phagocytosis of Mycobacterium kansasii in human neutrophils. In these cells CR3 has been found associated with several GPI-anchored proteins localized in cholesterol-rich microdomains (rafts) of the plasma membrane. Cholesterol sequestration by nystatin, filipin, or beta-cyclodextrin as well as treatment of neutrophils with phosphatidylinositol phospholipase C to remove GPI-anchored proteins from the cell surface markedly inhibited phagocytosis of M. kansasii, without affecting phagocytosis of zymosan or serum-opsonized M. kansasii. Abs directed against several GPI-anchored proteins inhibited phagocytosis of M. kansasii, but not of zymosan. N:-acetyl-D-glucosamine, which is known to disrupt interactions between CR3 and GPI proteins, also strongly diminished phagocytosis of these mycobacteria. In conclusion, phagocytosis of M. kansasii involved CR3, GPI-anchored receptors, and cholesterol. In contrast, phagocytosis of zymosan or opsonized particles involved CR3, but not cholesterol or GPI proteins. We propose that CR3, when associated with a GPI protein, relocates in cholesterol-rich domains where M. kansasii are internalized. When CR3 is not associated with a GPI protein, it remains outside of these domains and mediates phagocytosis of zymosan and opsonized particles, but not of M. kansasii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号