首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modification of the conventional grain count halving (GCH) method is presented. By determining the decrease of the mean grain number of all interphase cells in addition to that of all labelled interphase cells on the same autoradiographs, the potential doubling time Tpot (or the cell production rate kp) can be obtained in one and the same experiment. Thus the modified GCH method provides not only the cycle time of the cell population studied but also the growth fraction and, with additional cytofluorometric measurements, the duration of all cycle phases. By evaluating the cell production rate and the growth fraction this method leads to more reliable cell kinetic data of experimental tumours and human tumours growing in nude mice. In contrast to other cell kinetic methods, the modified GCH method can also be applied in special cases to human tumours in vivo, since only few points of measurement are needed. A comparison of the cell kinetic results obtained by the modified GCH method with those derived from the fraction of labelled mitoses method, both applied to allotransplants of the adenocarcinoma EO 771 in nude mice, shows good agreement.  相似文献   

2.
Abstract. The kinetics of isthmal cells in mouse antrum were examined in three ways: (a) the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; (b) the duration of interphase and mitotic phases was determined from how frequently they occurred; and (c) mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis.
The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively.
From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr.
Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase.
We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

3.
Abstract. In this report we describe the successful application of a novel microscope-based multiparameter laser scanning cytometer (LSC) to measure duration of different phases of cell cycle in HL-60 human leukaemic cell lines by the fraction of labelled mitoses (FLM) method. Exponentially growing cells were harvested after various time intervals following pulse-labelling with 5'-bromo-2'-deoxyuridine (BrdUrd), cytocentrifuged, fixed in ethanol, and then exposed to UV light to induce DNA strand breaks at the sites of incorporated BrdUrd. The 3'OH termini of the photolytically generated DNA strand breaks were labelled with BrdUTP in the reaction catalysed by exogenous terminal deoxynucleotidyl transferase (TdT), followed by FITC-labelled BrdUrd antibodies. DNA was counterstained with propidium iodide (PI). Due to differences in chromatin structure between the interphase and mitotic cells, the LSC identified the latter by virtue of their higher red (PI) fluorescence intensity values among all pixels over the measured cell. To confirm that the cells selected were indeed cells in mitosis, predominantly in metaphase, the recorded X-Y coordinates of selected cells were used to re-position the cell for their visual examination. From the time lapse analysis of percentage BrdUrd-labelled cells progressing through mitosis it was possible to calculate the duration of individual phases of the cell cycle. The duration of S (Ts) and G2+ M (TG2+M) was 8 and 3 h, respectively, and the minimal duration of G2 (TG2) was 2 h. The cell cycle time (Tc) estimated for the cohort of the most rapidly progressing cells was 13 h. The ability to automatically and rapidly discriminate mitotic cells combined with the possibility of their subsequent identification by image analysis makes LSC the instrument of choice for the FLM analysis.  相似文献   

4.
Abstract. Growth kinetic data of human tumours, obtained by flow cytometric analysis of cells labelled with bromodeoxyuridine (BrdUrd) might provide prognostic information and allow prediction of response to radio- and chemotherapy. However, the theoretical models applied for calculation of growth kinetic data are not fully evaluated. The purpose of this study was to investigate the dependence of the estimation of DNA synthesis time (Ts) on sampling time after BrdUrd labelling, using four different mathematical formulas (Begg et al. , White & Meistrich, White et al. and Johansson et al. ) which have been developed for the evaluation of flow cytometry-derived data of BrdUrd-labelled cells. In addition, we have investigated the influence of the growth kinetic properties of the cell populations using two cultured cell lines (one slow and one fast growing), and two heterotransplanted human tumours. The dependence of the estimation of Ts on sampling time was more or less pronounced, depending on the cell population examined and on the formula used. In the fast growing cell line, the estimates of Ts did not vary significantly with sampling time when using the formulas by White et al. , whereas in the slow growing cell line, the estimates of Ts did not show any significant dependence on sampling time when using the formula by Johansson et al. In the tumours, the estimation of Ts depended on sampling time with all formulas used, although to different degrees. In one of the tumours, this was mainly caused by the influence of mouse cells, as we demonstrate. Our results indicate that the proliferative characteristics of a cell population should be taken into consideration when choosing a mathematical formula in order to attain Ts values that are independent of sampling time.  相似文献   

5.
Abstract. It has been shown that the mathematical evaluation of data from many cell kinetic experiments, published up to 1977, was rather inaccurate. the discrepancies between published values of growth fraction ( GF ) and the cell loss factor ø, and the results of new calculations based on the same values of LI, Td, Tc, TG1, Ts and TG2, are sometimes surprising. Using a suitable approximation of ex - 1, the known formulae for GF and ø are replaced by simpler ones of sufficient accuracy. This may help to avoid computational errors in future cell kinetic studies of tumours.  相似文献   

6.
Abstract. In Snell dwarf mice, the influence of short-term treatment with human growth hormone (hGH) or thyroxine on the proliferative and sulphation activity of the proximal tibial growth plate was studied. By autoradiographic methods, the [3H]methylthymidine incorporation after a single injection was measured, after 2 hr incorporation time. the labelling index was calculated and the number of labelled mitoses was counted. In addition, the distribution of the labelled nuclei over the proliferating and degenerating zones was determined by continuous labelling for 25 and 73 hr.
In untreated dwarf mice after [3H]-methylthymidine administration, the number of labelled nuclei in the growth plate is low. Labelling occurs, as expected, mainly in the cells of the proliferative zones. the number of labelled nuclei in control dwarf mice was similar after 25 and 73 hr continuous labelling. This suggests that many cells are in a resting Go or prolonged G1 phase. Both hGH and T4 treatment induce a significant increase of the number of labelled nuclei per growth plate and of the number of mitoses. Since hormonal treatment induces a small number of mitoses after 2 hr incorporation of the label, the minimal G2 phase of the cell cycle is less than 2 hr. In addition, treatment with hGH and T4 stimulates chondrocytes in the zone of proliferative and hypertrophic cells to actively incorporate [35S]-sulphate.  相似文献   

7.
Abstract. The transit times of Chinese hamster ovary cells through the phases of their cell cycle were measured using dual parameter flow cytometry to measure DNA content and the presence of monoclonal antibodies to bromodeoxyuridine. Up to four separate populations can be accurately measured: unlabelled cells in G2+ M; labelled cells that have not yet divided; labelled cells that have already divided; and the unlabelled cells that were originally in G1 plus the cells that were originally in G2+ M and have since divided. The fractions of cells in these populations can be easily followed in time and the usual kinetic properties can be estimated from these fractions, or combinations thereof, including the times through G1, S, G2+ M and the cycle time. We present equations for analysing this type of data and comment on which equations are most appropriate for measuring specific kinetic properties of the cells.  相似文献   

8.
Abstract. In order to characterize the growth pattern of the human promyelocytic leukaemia cell line HL60, its kinetic parameters were studied. The doubling time was calculated from serial cell counts, the duration of the various cell cycle phases from the analysis of the labelled mitoses curve, and quiescent population from continuous labelling experiments. Proliferation in culture was exponential up to a saturation density of about 3.0 × 106 cells/ml, with a doubling time of 34.0 hr. The cell cycle duration was 24.3 ± 4.1 hr (SD), and that of the cell cycle phases was: G1, 3.8 ± 2.2 hr; S, 15.1 ± 3 hr; and G2, 5.4 ± 1.2 hr. The growth fraction was 0.85, and cell loss was restricted to the quiescent cells. The HL60 cell line, with fully characterized kinetics, provides a useful tool for the in vitro study of substances which may affect human leukaemic myelopoietic proliferation.  相似文献   

9.
The cell kinetics of the murine JB-1 ascites tumour have been investigated on days 4, 7 and 10 after transplantation of 2·5 × 106 cells. The experimental data, growth curve, percentage of labelled mitoses curves, continuous labelling curves and cytophotometric determination of single-cell DNA content have been analysed by means of a mathematical model for the cell kinetics. The important result was the existence of 8% non-cycling cells with G2 DNA content in the 10-day tumour, while only 0·2 and 0% were observed in the 7- and 4-day tumours, respectively. The doubling times determined from the growth curve were 22·8, 70 and 240 hr, respectively, in the 4-, 7- and 10-day tumours. Growth fractions of 76, 67 and 44% were calculated for the same tumour ages. The mean cell cycle time increased from 14 to 44 hr from day 4 to 7 due to a proportional increase in the mean transit time of all phases in the cell cycle. In the 10-day tumour, the mean cell cycle changed to 41 hr and T G1 decreased to 0·5 hr. The cell production rate was 4·3%/hr in the 4-day tumour, 1·2%/hr in the 7-day tumour and 1·0%/hr in the 10-day tumour. The cell loss rates in the same tumours were 1·3, 0·2 and 0·7%/hr, respectively. The analysis made it probable that the mode of cell loss was an age-specific elimination of non-cycling cells with postmitotic DNA content.  相似文献   

10.
Protein synthesis during photoinduced, synchronous progression of the cell cycle in single-celled protonemata of the fern Adiantum capillus-veneris was studied by tracer techniques. Nuclei of the protonemata were labelled with 3H-thymidine during spore germination so that the amount of 3H incorporated into the TCA-insoluble fraction of the cells could be used as a measure of the cell number in each sample. The rate of the incorporation of 14C-amino acids into TCA-insoluble materials was not significantly varied at different stages of the cell cycle or by treatment with blue light. Extracts of cells labelled with 35S-methionine at various times after the transfer from red light condition (G0) to darkness (G1 to S) were analyzed by two-dimensional gel electrophoresis. At least 3 of about 200 spots showed significant changes in intensity on fluorograms. Spot A (molecular weight 20,000, isoelectric point 6.3) was detectable only in early G1, whereas spot B (molecular weight 19,500, isoelectric point 6.3) was found only in the late G1 and S phases. When the cells were exposed to blue light before the dark incubation, the times of disappearance of spot A and appearance of spot B were advanced depending upon the progression of the cell cycle but not upon the clock time.  相似文献   

11.
Abstract. The growth of twelve human malignant melanomas in athymic nude mice was studied. Gompertz curves were fitted to volumetric growth data. DNA histograms were obtained with flow cytometry. Each of the twelve melanomas exhibited a characteristic growth pattern, indicating that inherent properties of the tumours are important for the growth control. The theoretical maximum volumes (Vmax) ranged from 208 to 12,900 mm3, the volume doubling times ( T d) from 2.8 to 15.3 days (V= 50 mm3) and from 3.8 to 64.6 days ( V = 200 mm3), and the fraction of cells in S from 5 to 21%. Tumours with short T d were characterized by a higher growth fraction and probably by a lower cell loss factor than those with long T d. The growth was also influenced by the nude mouse host, as indicated by the values for V max which were similar to those reported for mouse tumours (geometric mean = 8100 mm3), but considerably lower than the volumes of many tumours in man. Also the T d-values for the xenografts were generally lower than those reported for tumours in man, presumably due to a lower cell loss factor. During serial transplantation the growth rate of one of the melanomas increased abruptly, probably because of both an increased growth fraction and a reduced cell loss factor. The latter result demonstrates the necessity of keeping basic biological parameters of xenografts under observation during serial transplantation.  相似文献   

12.
A detailed study of the cellular proliferation kinetics in interfollicular plucked and unplucked mouse skin has been made in Swiss albino mice, using tritiated thymidine autoradiography. Diurnal variations in mitotic and labelling indices were demonstrated in both systems.
The mean cell cycle times for unplucked and plucked skin were estimated by four different methods and found to be 100 ± 10 and 47 ± 3 hr respectively. Most of the difference was due to the shortening of G1 phase after plucking. Repeated labelling at intervals shorter than the DNA synthesis times resulted in all the basal layer cells becoming labelled, so that the growth fraction was unity, in unplucked and plucked skin.
A well-defined second wave of labelled mitoses was seen at about 100 hr after labelling the unplucked (i.e. normal) mouse skin.
A double labelling technique using 14C-TdR and 3H-TdR with a single layer of emulsion gave reasonable values for the duration of the DNA synthesis phase.  相似文献   

13.
THE KINETICS OF GRANULOSA CELLS IN DEVELOPING FOLLICLES IN THE MOUSE OVARY   总被引:1,自引:0,他引:1  
This investigation describes the kinetics of the granulosa cells in medium-sized follicles type 3b, 4 and 5a in ovaries of 28-day-old Bagg mice. the method of labelling with 3H-thymidine followed by high resolution autoradiography is used in the experimental work, which consist of determining percentage labelled mitosis (PLM-) and continuous labelling (CL-) curves. In order to analyse the data by computer two alternative hypotheses A and B are set up. Both include the assumptions of no cell loss, exponential growth and a resting compartment Q. In hypothesis A cells from Q re-enter the mitotic cycle via the normal DNA-synthesis compartment Sp. Hypothesis B includes beside compartment Sp a special DNA-synthesis compartment Sq where only cells from Q are synthesizing DNA, and these cells re-enter the mitotic cycle via the G2 compartment. the mean transit time in Sq is considered to be longer than the mean transit time in Sq. On the basis of the hypothesis mathematical expressions for the PLM- and CL-curves are obtained, and by means of a computer the theoretical curves are fitted to the experimental values: thereby all relevant cell kinetical parameters are estimated. Hypothesis B seems to give the best fit between the theoretical and experimental curves. the estimated parameters are: mean cycle times, μc= (56.1 hr, 56.1 hr and 22.3 hr for type 3b, 4 and 5a respectively), doubling times, T D= (96.4 hr, 118.6 hr and 59.1 hr) and the proportion of cells in Q, p Q = (0.60, 0.71 and 0.69).  相似文献   

14.
Abstract. The effects of vinblastine on the cell cycle and the migration of ameloblasts were studied in the lower incisors of mice by labelling the cells with 3H-thymidine ([3H]TdR) and radioautography. A group of mice received 2 μg/g of body weight vinblastine intraperitoneally and 6 hr after these animals and those of a control group were injected with 1μCi/g body weight of [3H]TdR, and sacrificed at time intervals from 0.75 hr to 15 days.
The generation time of ameloblasts in the progenitor compartment was 14.8 hr in animals treated with vinblastine and 17 hr in the controls, using the FLM curve method; with the grain dilution method the duration was respectively 29.25 hr and 25.96 hr. the thymidine labelling index of the treated animals was 50% higher than the controls. the velocity of ameloblast migration, determined either by the displacement of the most incisally labelled cell or by the grain dilution method, was lower in the experimental group (2.48 cell positions/hr and 9.18 μ/hr respectively) as compared with the control (3.21 cell positions/hr and 18.88 μm/hr respectively).
The results on the ameloblast production rate are contradictory but the slowing down in the velocity of cell migration is compatible with a decrease of the rate of cell production in the progenitor compartment as a vinblastine effect.  相似文献   

15.
Ehrlich ascites tumours were transplanted from their normal hosts (mice) into rats, and studies made of the timing of cell cycle 120-170 hr after transplantation, when tumour regression was under way. There was no significant change in the duration of the cell cycle. Some increase was found in the average and spread of G2 durations, largely compensated by a decrease in S duration. When taken together with previously published work the results suggest that the immunological pressure of transplantation into a heterologous host prolongs the G2 period.  相似文献   

16.
Abstract. Different sets of cell kinetic data obtained over many years from hairless mouse epidermis have been simulated by a mathematical model including circadian variations. Simulating several independent sets of data with the same mathematical model strengthens the validity of the results obtained. The data simulated in this investigation were all obtained with the experimental system in a state of natural synchrony. The data include cell cycle phase distributions measured by DNA flow cytometry of isolated epidermal basal cells, fractions of tritiated thymidine ([3H]TdR) labelled cells within the cell cycle phases measured by cell sorting at intervals after [3H]TdR pulse labelling, bivariate bromodeoxyuridine (BrdUrd)/DNA data from epidermal basal cells isolated at intervals after pulse labelling with BrdUrd, mitotic rate and per cent labelled mitosis (PLM) data from histologic sections. The following main new findings were made from the simulations: the second PLM peak observed at about 35 h after pulse labelling is hardly influenced by circadian variations; the peak is mainly determined by persisting synchrony of a rapidly cycling population with a G1-duration (TG1) of 20 h to 30 h; and there is a highly significant population of slowly cycling G1-cells (G). However, no significant circadian variations were found in the number of these cells.  相似文献   

17.
Abstract. Changes in morphology and cell kinetics are described in a rat thyroid transplantable tumour (TTT) during the first few transplant generations. The growth of TTT in animals was possible only with an increased circulation level of the thyroid stimulating hormone (TSH). With serial transplantation subcutaneously in isologous animals, the morphology of TTT changed dramatically from that of a follicular tumour in the 3rd passage to become, by the 9th generation, a poorly differentiated tumour with a trabecular arrangement of cells. This change in tumour morphology was accompanied by an increase in the number of proliferating cells–mitotic index (MI), [3H]thymidine labelling index (LI), growth fraction (GF)–and cell loss factor (O) as well as a decrease in the cell cycle time (Tc) and potential population doubling time (TPD). TTT belongs to the class of tumours with a low proliferative activity and might be used in a variety of cell kinetic, radiobiological and chemotherapy studies.  相似文献   

18.
Abstract. Multivariate analysis of the expression of cyclin proteins and DNA content has opened new possibilities for the study of the cell cycle. By virtue of their cell cycle phase specificity, the expression of cyclins may serve, in addition to DNA content, as another marker of a cell's position in the cycle, and provide information about the proliferative potential of cell populations. Several applications of the methodology based on bivariate analysis of DNA content v . expression of B, E and D type cyclins are reviewed: 1 expression of cyclins by individual cells during their progression through the cycle can be studied, using exponentially growing cells without the necessity of cell synchronization or other perturbations of the cycle; 2 cells having the same DNA content but residing in different phases of the cycle (e.g. G2 diploid v. G1 tetraploid) can be distinguished; 3 cell transition from G0 to G1 and progression through G1 (e.g. mitogen stimulated lymphocytes) can be assayed; 4 the population of proliferating cells can be distinguished from noncycling cells based on dual cell labelling with a G1 and G2 cyclin antibody; 5 cyclin restriction points can serve as additional cell cycle landmarks to map the point of action of antitumour drugs; 6 unscheduled expression of cyclins (e.g. the presence of cyclin B1 during G1 and S) can be detected in several tumour transformed cell lines, possibly indicating disregulation of the machmery of cell cycle progression. The last finding 6 is of special importance, because such disregulation may be of prognostic consequence in human tumours.  相似文献   

19.
Cell kinetic parameters of cells in the crypt of the jejunum of the mouse were obtained autoradiographically. A number of different methods used in cell proliferation studies were applied to the same animal strain kept under constant conditions. In order to avoid effects of geometrical factors, squashes of isolated crypts were used.
The generation time was determined by the per cent labelled mitoses method of Quastler, modified by double labelling with 3H- and 14C-TdR. This modified method permits a more exact determination of the generation time. The duration of the cycle was 14 hr.
Double labelling experiments in which an injection of 3H-TdR was followed by an injection of 14C-TdR after 1 hr showed that the cell flux was 7.0%/hr at the beginning of the S-phase and 7.68%/hr at the end. Assuming steady state growth a constant cell flux of 7.15%/hr within the whole cycle can be derived from the measured generation time of 14 hr. These results clearly show that the crypt epithelia constitute a steady state system with constant frequency distribution of the cells throughout the cycle.
The per cent labelled mitoses method after a single injection of 3H-TdR as well as double labelling experiments with 3H- and 14C-TdR give an estimate of the S-phase of 8.0 or 7.4 hr respectively. Double determinations lead to a value of 0.54 or 0.52 hr respectively for the duration of mitosis and to values of 77% and 72%  相似文献   

20.
Experiments in mice on the fraction of haemopoietic stem cells in S-phase after irradiation indicated that a large fraction of the cells resting in G0 will enter S-phase after a very short interval of time.
After excluding alternative explanations it must be concluded that cells in G0 have completed all preparations for going into S-phase or, in other words, that the localization of these G0 cells in relation to other phases of the cell cycle must be between G1 and S-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号