首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high fibrin specificity of Desmodus rotundus salivary plasminogen activator alpha1 (DSPAalpha1 or desmoteplase (INN)) makes it a promising candidate for the treatment of acute ischemic stroke. In the current study we explored the use of transgenic tobacco plants and BY-2 suspension cells as alternative production platforms for this drug. Four different N-terminal signal peptides, from plants and animals, were used to translocate the recombinant DSPAalpha1 protein to the endomembrane system. Intact recombinant DSPAalpha1 was produced in transgenic plants and BY-2 cells, although a certain degree of degradation was observed in immunoblotted extracts. The choice of signal peptide had no major influence on the degradation pattern or recombinant protein accumulation, which reached a maximum level of 38 microg/g leaf material. N-terminal sequencing of purified, His6-tagged DSPAalpha1 revealed only minor changes in the position of signal peptide cleavage compared to the same protein expressed in Chinese hamster ovary cells. However, correctly processed recombinant DSPAalpha1 was also detected. The enzymatic activity of the recombinant protein was confirmed using an in vitro assay with unpurified and purified samples, demonstrating that plants are suitable for the production of functional DSPAalpha1. In contrast to whole plant cell extracts, no recombinant DSPAalpha1 was detected in the culture supernatant of transgenic BY-2 cells. Further analysis showed that recombinant DSPAalpha1 is subject to proteolysis and that endogenous secreted BY-2 proteases are responsible for DSPAalpha1 degradation in the culture medium. The addition of a highly concentrated protease inhibitor mixture or 5 mM EDTA reduced DSPAalpha1 proteolysis, improving the accumulation of intact product in the culture medium. Strategies to improve the plant cell suspension system for the production of secreted recombinant proteins are discussed.  相似文献   

2.
3.
4.
Laccase (Lcc) is a lignin-degrading enzyme produced by white-rot fungi and has been the subject of much interest in the field of bioremediation due to its ability to oxidize phenolic compounds. In this report, we describe the isolation and characterization of lcc1, a novel gene of Lentinula edodes that encodes Lcc1, and demonstrate that recombinant Lcc1 is expressed in an active, secreted form in tobacco BY-2 cells in culture. The open reading frame of lcc1 was 1,557 base pairs in length and encoded a putative protein of 518 amino acids. We introduced a chimeric form of lcc1 (CaMV35Sp:clcc1) into tobacco BY-2 cells and obtained several stable clcc1 transformants that expressed active Lcc1. Lcc1 activity in BY-2 culture media was higher than in cellular extracts, which indicated that recombinant Lcc1 was produced in a secreted form. Recombinant Lcc1 had a smaller apparent molecular weight and exhibited a different pattern of posttranslational modification than Lcc1 purified from L. edodes. The substrate specificity of purified recombinant Lcc1 was similar to L. edodes Lcc1, and both enzymes were able to decolorize the same set of dyes. These results suggest that heterologous expression of fungal Lcc1 in BY-2 cells will be a valuable tool for the production of sufficient quantities of active laccase for bioremediation.  相似文献   

5.
A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K m of 10.55 ± 0.9 μM, a k cat of 0.6 ± 0.01 s−1 and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAα1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.  相似文献   

6.
To investigate the factor that determines incompatible interactions between Pseudomonas syringae pv. tabaci and non-host plants, an elicitor of hypersensitive reaction (HR) was partially purified from the supernatant of a nutrient-poor medium of bacterial culture by DEAE column chromatography. The major protein in the elicitor-active fractions was identified as a flagellin which is a component of flagellar filaments. The flagellins purified from Psyringae pv. tomato and glycinea, incompatible pathogens of tobacco plants, induced fragmentation of chromosomal DNA and oxidative burst accompanied by programmed cell death in tobacco (Nicotiana tabacum) Bright Yellow (BY-2) cells, but the flagellin from pv. tabaci, a compatible pathogen, did not. However, the amino acid sequences of flagellins deduced from fliC genes showed a high homology among these Psyringae pathovars. In particular, the amino acid sequences of pv. tabaci and glycinea are completely identical. However, both recombinant flagellins produced in Escherichia coli possess HR-inducing activity in BY-2 cells. These results indicate that the post-translational modification of flagellins has an important role for HR-inducing ability in tobacco cells. Furthermore, we discuss the cause of a different elicitor activity among flagellins on tobacco cells and the role of flagellins in the determining specificity.  相似文献   

7.
Tomato bifunctional nuclease 1 (TBN1) is a polyfunctional protein with anticancerogenic activity originally isolated as an overexpressed protein from viroid-infected tomato. Its molecular farming in plant cells could be a non-expensive source for its biotechnology preparation. So we analysed TBN1 expression in Agrobacterium-infiltrated leaf sectors of Nicotiana benthamiana and in transformed suspension culture of tobacco BY-2 cells. During its transient expression, TBN1 mRNA was strongly degraded within a hot spot localized in the 3′ region. This early degradation process was inhibited by PTGS suppressors p19 and p38 resulting in increased TBN1 mRNA and protein yield. In parallel to degradation of TBN1 mRNA, high mRNA levels of two RNA-dependent RNA polymerases were detected in infiltrated leaf sectors, as well as in the transformed tobacco suspension culture BY-2, where low expression of the nuclease was stably maintained. Higher TBN1 mRNA and nuclease activity levels were found during its molecular farming in RDR6-deficient N. benthamiana plants. By fluorescent microscopy of infiltrated and transformed plant cells, the nuclease-GFP fusion protein was shown to be organized in filament-like structures.  相似文献   

8.
Most human serum albumin (HSA) for medical applications is derived from human plasma due to the lack of suitable heterologous expression systems for recombinant HSA (rHSA). To determine whether plant cell cultures could provide an alternative source, we employed the hyper-translatable cowpea mosaic virus protein expression system (CPMV-HT) to stably express rHSA in tobacco Bright Yellow-2 (BY-2) cells. rHSA was stably produced with yield up to 11.88 μg/ml in the culture medium, accounting for 0.7% of total soluble protein, in a 25-ml flask. Cultivation of transgenic cells in modified Murashige and Skoog medium with a pH of 8.0 improved the yield of rHSA two-fold, which may be the result of reduced proteolytic activity in the modified medium. A simple purification scheme was developed to purify the rHSA from culture medium, resulting in a recovery of 48.41% of the secreted rHSA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and N-terminal sequence analysis of the purified rHSA revealed that plant cell-derived rHSA is identical to that of the plasma-derived HSA. Our results show that the CPMV-HT system, which was originally developed as a transient expression system for use in whole plants, can also be used for high-level expression of rHSA, a protein highly susceptible to proteolysis, in transgenic tobacco cells.  相似文献   

9.
Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.  相似文献   

10.
Porcine circovirus type 2 (PCV‐2) is the main causative agent associated with a group of diseases collectively known as porcine circovirus‐associated disease (PCAD). There is a significant economic strain on the global swine industry due to PCAD and the production of commercial PCV‐2 vaccines is expensive. Plant expression systems are increasingly regarded as a viable technology to produce recombinant proteins for use as pharmaceutical agents and vaccines. However, successful production and purification of PCV‐2 capsid protein (CP) from plants is an essential first step towards the goal of a plant‐produced PCV‐2 vaccine candidate. In this study, the PCV‐2 CP was transiently expressed in Nicotiana benthamiana plants via agroinfiltration and PCV‐2 CP was successfully purified using sucrose gradient ultracentrifugation. The CP self‐assembled into virus‐like particles (VLPs) resembling native virions and up to 6.5 mg of VLPs could be purified from 1 kg of leaf wet weight. Mice immunized with the plant‐produced PCV‐2 VLPs elicited specific antibody responses to PCV‐2 CP. This is the first report describing the expression of PCV‐2 CP in plants, the confirmation of its assembly into VLPs and the demonstration of their use to elicit a strong immune response in a mammalian model.  相似文献   

11.
L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites. Recombinant NtGPPase hydrolyzed not only L-galactose-1-phosphate, but also myo-inositol-1-phosphate. The optimum pH for the GPPase activity of NtGPPase was 7.5. Its enzyme activity required Mg2+, and was inhibited by Li+ and Ca2+. Its fluorescence, fused with green fluorescence protein in onion cells and protoplasts of tobacco BY-2 cells, was observed in both the cytosol and nucleus. The expression of NtGPPase mRNA and protein was clearly correlated with L-ascorbic acid (AsA) contents of BY-2 cells during culture. The AsA contents of NtGPPase over expression lines were higher than those of empty lines at 13 d after subculture. This suggests that NtGPPase contributes slightly to AsA biosynthesis.  相似文献   

12.
Metridia luciferase is a secreted luciferase from a marine copepod and uses coelenterazine as a substrate to produce a blue bioluminescence (λmax = 480 nm). This luciferase has been successfully applied as a bioluminescent reporter in mammalian cells. The main advantage of secreted luciferase as a reporter is the capability of measuring intracellular events without destroying the cells or tissues and this property is well suited for development of high throughput screening technologies. However because Metridia luciferase is a Cys-rich protein, Escherichia coli expression systems produce an incorrectly folded protein, hindering its biochemical characterization and application for development of in vitro bioluminescent assays. Here we report the successful expression of Metridia luciferase with its signal peptide for secretion, in insect (Sf9) cells using the baculovirus expression system. Functionally active luciferase secreted by insect cells into the culture media has been efficiently purified with a yield of high purity protein of 2–3 mg/L. This Metridia luciferase expressed in the insect cell system is a monomeric protein showing 3.5-fold greater bioluminescence activity than luciferase expressed and purified from E. coli. The near coincidence of the experimental mass of Metridia luciferase purified from insect cells with that calculated from amino acid sequence, indicates that luciferase does not undergo post-translational modifications such as phosphorylation or glycosylation and also, the cleavage site of the signal peptide for secretion is at VQA-KS, as predicted from sequence analysis.  相似文献   

13.
Concanavalin A (ConA) is a well characterized and extensively used lectin accumulated in the protein bodies of jack bean cotyledons. ConA is synthesized as an inactive precursor proConA. The maturation of inactive proConA into biologically active ConA is a complex process including the removal of an internal glycopeptide and a C-terminal propeptide (CTPP), followed by a head-to-tail ligation of the two largest polypeptides. The cDNA encoding proConA was cloned and expressed in tobacco BY-2 cells. ProConA was slowly transported to the vacuole where its maturation into ConA was similar to that in jack bean cotyledons, apart from an incomplete final ligation. To investigate the role of the nine amino acid CTPP, a truncated form lacking the propeptide (proConADelta9) was expressed in BY-2 cells. In contrast to proConA, proConADelta9 was rapidly chased out of the endoplasmic reticulum (ER) and secreted into the culture medium. The CTPP was then fused to the C-terminal end of a secreted form of green fluorescent protein (secGFP). When expressed in tobacco BY-2 cells and leaf protoplasts, the chimaeric protein was located in the vacuole whereas secGFP was located in the culture medium and in the vacuole. Altogether, our results show we have isolated a new C-terminal vacuolar sorting determinant.  相似文献   

14.
Lysosomal storage diseases (LSDs), that collectively represent over 50 disorders, are amenable to enzyme replacement therapies. However, the current methods used to commercially produce recombinant lysosomal enzymes for this purpose, most commonly Chinese Hamster Ovary cells and human fibroblasts, are prohibitively costly. Plant bioreactors hold great promise for economic production of functional human α-l-iduronidase (hIDUA; glycosaminoglycan α-l-iduronohydrolase; EC 3.2.1.76), the enzyme deficient in the human LSD, Mucopolysaccharidosis I. We have developed and tested an expression system using transgenic tobacco BY-2 cells to produce high amounts of active hIDUA. A plant signal peptide was essential for proper expression and secretion of the 78 kDa glycosylated hIDUA into the cultured media of transgenic BY-2 cells. The yield and activity of the secreted hIDUA from long-term cultures of transgenic BY-2 cell lines were as high as 10 μg/mL media and 53,000 pmol/min/mg proteins, respectively. Thus, this transgenic BY-2 cell line presents an attractive platform for economic production and easy downstream purification of hIDUA for enzyme replacement therapy. Furthermore, this system can be used for the production and purification of other human lysosomal enzymes or pharmaceuticals.  相似文献   

15.
Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.  相似文献   

16.
Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.  相似文献   

17.
L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites. Recombinant NtGPPase hydrolyzed not only L-galactose-1-phosphate, but also myo-inositol-1-phosphate. The optimum pH for the GPPase activity of NtGPPase was 7.5. Its enzyme activity required Mg2+, and was inhibited by Li+ and Ca2+. Its fluorescence, fused with green fluorescence protein in onion cells and protoplasts of tobacco BY-2 cells, was observed in both the cytosol and nucleus. The expression of NtGPPase mRNA and protein was clearly correlated with L-ascorbic acid (AsA) contents of BY-2 cells during culture. The AsA contents of NtGPPase over expression lines were higher than those of empty lines at 13 d after subculture. This suggests that NtGPPase contributes slightly to AsA biosynthesis.  相似文献   

18.
Arabinogalactan-proteins (AGPs) are a class of highly glycosylated, hydroxyproline-rich glycoproteins that function in plant growth and development. Tomato LeAGP-1 represents a major AGP expressed in cultured cells and plants. Based on cDNA and amino acid sequence analyses along with carbohydrate and other biochemical analyses, tomato LeAGP-1 is hypothesized to be a classical AGP localized to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. Here, this hypothesis was tested and supported with the following experiments. First, tomato ( Lycopersicon esculentum , cv. UC82B) cotyledon protoplasts were isolated following cell wall digestion with cellulase and pectinase, and LeAGP-1 was immunolocalized to the plasma membrane with a LeAGP-1 antibody. Second, LeAGP-1 was shown to be a major AGP component in plasma membrane vesicles from tomato cv. Bonnie Best suspension-cultured cells by Western blot analysis with the LeAGP-1 antibody. Third, fluorescence microscopy of plasmolysed, transgenic tobacco ( Nicotiana tabacum BY-2) suspension-cultured cells expressing a green fluorescent protein (GFP)-LeAGP-1 fusion product demonstrated localization to the plasma membrane and Hechtian threads. Fourth, the GFP-LeAGP-1 fusion protein was present in plasma membrane preparations from these transgenic tobacco cells by Western blot analysis with a GFP antibody. Fifth, GFP-LeAGP-1 secreted into the culture media contained ethanolamine, presumably attached to the C-terminal amino acid residue, consistent with its processing and release from the plasma membrane. Thus, these data support the hypothesis that LeAGP-1 is localized to the plasma membrane via a GPI anchor and suggest possible roles for LeAGP-1 in cellular signalling and matrix remodelling.  相似文献   

19.
As a usual response, plants induce/activate various proteins which are thought to be involved in defense mechanisms against the biotic and abiotic stresses they may be confronted with. The novel DUF538 domain containing proteins with unknown functions have been found to be induced/activated in response to different environmental stress stimuli in plants. In order to perform biochemical studies with these new plant stress-responsive proteins, a cDNA containing DUF538 domain was amplified from Celosia cristata full-length leaf expression library using a specific primer set. The isolated cDNA was subsequently expressed in Escherichia coli as a part of maltose-binding fusion protein (MBP-DUF538 construct) and purified at the yield of about 32 mg per liter of cell culture by affinity chromatography without affecting the recombinant bacterial cell growth. The purified fusion product was exogenously applied (10 μg per 4 cm2) on the leaves of Nicotiana tobaccum L. The results revealed that fused DUF538 protein does not induce morphological reposes, but elevates redox enzyme activities including catalase, peroxidase, polyphenol oxidase and phenyalanine ammonia lyase. This is the first time ever time report with respect to the heterologous expression of a plant stress-responsive DUF538 domain that may provide a basis to study its physiological roles and biochemical activities in vitro and in vivo.  相似文献   

20.
Herpes simplex virus type 1 (HSV-1) is responsible for cold sores in the general population, but also contributes to the development of other more serious diseases in some circumstances. The viral glycoprotein D (gD) is essential for virus entry into host cells. In the present study, the Drosophila melanogaster Schneider 2 (S2) expression system (DES) was evaluated for the expression of recombinant gD1. The DNA sequences encoding the full-length gD1 (369aa, FLgD1) and a truncated gD1 form corresponding to the ectodomain (314aa, EgD1) were cloned into S2 expression vector pMT/BiP/V5-HisA to generate pMT-EgD1 and pMT-FLgD1, respectively. Two forms of gD1 gene were fitted with a hexahistidine tag to facilitate their purification. Cell populations expressing the highest gD1 levels were selected by using a limiting dilution assay. Western blot, flow cytometry (FACS), and confocal immunofluoresence assay demonstrated that the full-length form is restrained in the lipid membranes of the cell and the ectodomain form is secreted into the medium. Recombinant ectodomain gD1 was scaled up and purified from the culture medium using nickel nitrilotriacetic acid affinity chromatography, and a maximum production level of 56.8 mg/L of recombinant gD1 was obtained in a shake-flask culture of S2 cells after induction with 5 µM CdCl2 for 4 days. Mice were then immunized with recombinant purified gD1 and produced high titers of antibody measured by enzyme-linked immunosorbent assay (ELISA; 1:5,120,000) as well as high plaque neutralization titer (1:320). Overall, the data indicated that stable expression in S2 cells is a practical way of synthesizing gD1 for use in structural and functional studies in the further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号