共查询到20条相似文献,搜索用时 0 毫秒
1.
A DNA repair-promoting protein, PprA, was isolated from a radiation resistant bacterium, Deinococcus radiodurans [I. Narumi, K. Sato, S. Cui, T. Funayama, S. Kitayama, H. Watanabe, PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation, Mol. Microbiol. 54 (2004) 278-285]. Despite several studies, however, the function of PprA is not still clear. We used atomic force microscopy (AFM) to elucidate the role of this protein in the DNA repair pathway. In the present study, interaction between the linear DNA and PprA protein was imaged and analyzed by AFM without any fixation or staining. Though both end-bound and internally bound PprA was observed, the affinity of the end-bound protein was greater considering the proportion of features of binding analyzed by AFM. In some conditions, looping forms of the DNA-PprA complex were observed. Gel filtration high performance liquid chromatography (HPLC) was also conducted to estimate the molecular weight of this protein. The result of the HPLC analysis suggested that PprA formed multimers in buffer solution without DNA. 相似文献
2.
3.
Raspanti M Congiu T Alessandrini A Gobbi P Ruggeri A 《European journal of histochemistry : EJH》2000,44(4):335-343
The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research. 相似文献
4.
We applied atomic force microscopy (AFM) for direct imaging of intramolecular triplexes (H-DNA) formed by mirror-repeated purine-pyrimidine repeats and stabilized by negative DNA supercoiling. H-DNA appears in atomic force microscopy images as a clear protrusion with a different thickness than DNA duplex. Consistent with the existing models, H-DNA formation results in a kink in the double helix path. The kink forms an acute angle so that the flanking DNA regions are brought in close proximity. The mobility of flanking DNA arms is limited compared with that for cruciforms and three-way junctions. Structural properties of H-DNA may be important for promoter-enhancer interactions and other DNA transactions. 相似文献
5.
Type II topoisomerases (Topo II) are unique enzymes that change the DNA topology by catalyzing the passage of two double-strands across each other by using the energy from ATP hydrolysis. In vitro, human Topo II relaxes positive supercoiled DNA around 10-fold faster than negative supercoiled DNA. By using atomic force microscopy (AFM) we found that human Topo II binds preferentially to DNA cross-overs. Around 50% of the DNA crossings, where Topo II was bound to, presented an angle in the range of 80-90°, suggesting a favored binding geometry in the chiral discrimination by Topo II. Our studies with AFM also helped us visualize the dynamics of the unknotting action of Topo II in knotted molecules. 相似文献
6.
7.
Saito M Kobayashi M Iwabuchi S Morita Y Takamura Y Tamiya E 《Journal of biochemistry》2004,136(6):813-823
DNA condensation was only observed after the addition of Hoechst 33258 (H33258) among various types of DNA binding molecules. The morphological structural change of DNA was found to depend on the H33258 concentration. On comparison of fluorescence spectrum measurements with AFM observation, it was found that fluorescence quenching of DNA-H33258 complexes occurred after DNA condensation. Additionally, we showed that DNA condensation by H33258 was independent of sequence selectivity or binding style using two types of polynucleotides, i.e. poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Moreover, it was concluded that the condensation was caused by a strong hydrophobic interaction, because the dissolution of condensed DNA into its native form on dimethyl sulfoxide (DMSO) treatment was observed. This study is the first report, which defines the DNA condensation mechanism of H33258, showing the correlation between the single molecule scale morphology seen on AFM observation and the bulky scale morphology observed on fluorescence spectroscopy. 相似文献
8.
A Simon T Cohen-Bouhacina J P Aimé M C Porte J Amédée C Baquey 《Cellular and molecular biology, including cyto-enzymology》2004,50(3):255-266
Atomic force microscopy (AFM) is a non-invasive microscopy to explore living biological systems like cells in liquid environment. Thus AFM is an appropriate tool to investigate surface chemical modification and its influence on biological systems. In particular, control over biomaterial surface chemistry can result in a regulated cell response. This report investigates the influence of adhesive and non-adhesive surfaces on the cell morphology and the influence of the cytoskeleton structure on the local mechanical properties. In this study, the main work concerns a thorough investigation of the height images obtained with an AFM as therecorded images provide the evolution of the mechanical properties of the cell as function of its local structure. Information on the cell elasticity due to the cytoskeleton organization is deduced when comparing the AFM tip indentation depth versus the distance between the cytoskeleton bundles for the different samples. 相似文献
9.
Stretched DNA structures observed with atomic force microscopy. 总被引:3,自引:1,他引:2
Double-stranded DNA molecules are occasionally found that appear to be straightened and stretched in atomic force microscope (AFM) images. Usually pBS+ plasmid and lambda DNA show relaxed structures with bends and kinks along the strands and have measured contour lengths consistent to about 5-7%; they also appear not to cross over each other, except in very high concentrations. The anomalous molecules observed here, compared with the majority of molecules in the preparation, show contour lengths increased by as much as 80% and have measured heights of about half that of normal relaxed DNA. Some molecules also appear to be in transition between stretched and relaxed forms. These observations are consistent with an uncoiling of the DNA helix without breakage of the covalent bonds in the deoxyribose-phosphate backbone. 相似文献
10.
11.
Lamellas formed on the mica by protein 1F9, a recombinant analogue of the web protein, have been studied by atomic force microscopy. It has been shown that the molecules of 1F9 dissolved in strong solvents are capable of aggregating on the mica surface to form lamellas less than 1 nm in height and more than 1 microm in length. A model of a plane zigzag has been constructed to describe the conformation of 1F9 molecules on the mica surface. 相似文献
12.
The interaction between nanoparticles (NPs) and DNA is of significance for both application and implication research of NPs. In this study, a single-molecule imaging technique based on atomic force microscopy (AFM) was employed to probe the NP-DNA interactions with quantum dots (QDs) as model NPs. Reproducible high-quality images of single DNA molecules in air and in liquids were acquired on mica by optimizing sample preparation conditions. Furthermore, the binding of QDs to DNA was explored using AFM. The DNA concentration was found to be a key factor influencing AFM imaging quality. In air and liquids, the optimal DNA concentration for imaging DNA molecules was approximately 2.5 and 0.25 μg/mL, and that for imaging DNA binding with QDs was 0.5 and 0.25 μg/mL, respectively. In the presence of QDs, the DNA conformation was altered with the formation of DNA condensates. Finally, the fine conformation of QD-DNA binding sites was examined to analyze the binding mechanisms. This work will benefit investigations of NP-DNA interactions and the understanding of the structure of NP-DNA bioconjugates. See accompanying article by Wang DOI: 10.1002/biot.201200309 相似文献
13.
The interaction between ribosome-inactivating proteins (RIPs) and supercoiled DNA was observed with an atomic force microscope (AFM). It was found that RIPs can bind to both supercoiled DNA and the unwound double stranded loop region in supercoiled DNA. The RIPs hound to the supercoils can induce the conformational change of supercoiled DNA. Furthermore, the supercoiled DNA was relaxed and cleaved into nick or linear form by RIPs. It indicated that RIP seemed to be a supercoil-dependent DNA binding protein and exhibited the activity of su-percoil-dependent DNA endonuclease. 相似文献
14.
Toshio Ando 《Biophysical reviews》2018,10(2):285-292
Various techniques have been developed and used to investigate how proteins produce complex biological architectures and phenomena. Among these techniques, high-speed atomic force microscopy (HS-AFM) holds a unique position. It is only HS-AFM that allows the simultaneous assessment of structure and dynamics of single protein molecules in action. This new microscopy tool has been successfully applied to a variety of proteins, from motor proteins to membrane proteins, antibodies, enzymes, and even to intrinsically disordered proteins. And yet there still remain many biomolecular phenomena that cannot be addressed by HS-AFM in its current form. Here, I present a brief history of HS-AFM development, describe the current state of HS-AFM, and then discuss which new biological scanning probe microscopy techniques will be coming up next. 相似文献
15.
Chitosan has emerged as a promising material for biomedical applications. However, the effect of chitosan adsorption on the structure of model biomembrane is not known. In this study, atomic force microscopy (AFM) is employed to investigate the interaction between chitosan and mica-supported dipalmitoylphosphocholine (DPPC) bilayer. First, in situ AFM measurement indicates that nucleation of chitosan occurs around the membrane defects at the initial stage of chitosan incubation. Eventually, DPPC-chitosan binding and chitosan intermolecular association lead to chitosan aggregation on the membrane surface which is quantified by average height measurement and RMS roughness analysis. Lateral force microscopy (LFM) confirms that the adsorbed chitosan has distinct material properties. Furthermore, the trend of surface pressure-area isotherms supports the condensation of DPPC monolayer induced by chitosan in the aqueous subphase. Surface coverage and surface roughness analysis show that the extent of chitosan aggregation on the supported membrane is affected by the incubation time during long-term chitosan incubation. 相似文献
16.
Shlyakhtenko LS Potaman VN Sinden RR Gall AA Lyubchenko YL 《Nucleic acids research》2000,28(18):3472-3477
We have used atomic force microscopy (AFM) to study the conformation of three-way DNA junctions, intermediates of DNA replication and recombination. Immobile three-way junctions with one hairpin arm (50, 27, 18 and 7 bp long) and two relatively long linear arms were obtained by annealing two partially homologous restriction fragments. Fragments containing inverted repeats of specific length formed hairpins after denaturation. Three-way junctions were obtained by annealing one strand of a fragment from a parental plasmid with one strand of an inverted repeat-containing fragment, purified from gels, and examined by AFM. The molecules are clearly seen as three-armed molecules with one short arm and two flexible long arms. The AFM analysis revealed two important features of three-way DNA junctions. First, three-way junctions are very dynamic structures. This conclusion is supported by a high variability of the inter-arm angle detected on dried samples. The mobility of the junctions was observed directly by imaging the samples in liquid (AFM in situ). Second, measurements of the angle between the arms led to the conclusion that three-way junctions are not flat, but rather pyramid-like. Non-flatness of the junction should be taken into account in analysis of the AFM data. 相似文献
17.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. 相似文献
18.
Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study 总被引:20,自引:0,他引:20 下载免费PDF全文
The effect of various drugs affecting the integrity of different components of the cytoskeleton on the elasticity of two fibroblast cell lines was investigated by elasticity measurements with an atomic force microscope (AFM). Disaggregation of actin filaments always resulted in a distinct decrease in the cell's average elastic modulus indicating the crucial importance of the actin network for the mechanical stability of living cells. Disruption or chemical stabilization of microtubules did not affect cell elasticity. For the f-actin-disrupting drugs different mechanisms of drug action were observed. Cytochalasins B and D and Latrunculin A disassembled stress fibers. For Cytochalasin D this was accompanied by an aggregation of actin within the cytosol. Jasplakinolide disaggregated actin filaments but did not disassemble stress fibers. Fibrous structures found in AFM images and elasticity maps of fibroblasts could be identified as stress fibers by correlation of AFM data and fluorescence images. 相似文献
19.
Two new microscopic techniques make it possible to obtain images of biologically interesting molecules directly in air, vacuum, or under water. Scanning tunneling microscopy and atomic force microscopy both have the capacity to visualize atoms on the surface of rigid structures and provide details of molecular structure for lipids, proteins, carbohydrates, and nucleic acids. In addition to providing visualizations of individual molecules, these scanning probe techniques allow direct imaging of complexes between molecules or between molecules and higher-order subcellular structures such as membranes and cytoskeletal components. Both microscopes can be operated under a variety of ambient conditions ranging from high vacuum to above atmospheric pressure. Specimens need not be dry; both techniques have been used to image molecules in aqueous media under nearly physiological conditions. It is proposed that as these techniques mature they will allow direct observation of many molecular interactions under physiological conditions or even in vivo while they are occurring within the cell. 相似文献