首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MLN64 is a transmembrane protein that shares homology with the cholesterol binding domain (START domain) of the steroidogenic acute regulatory protein. The steroidogenic acute regulatory protein is located in the inner membrane of mitochondria, where it facilitates cholesterol import into the mitochondria. Crystallographic analysis showed that the START domain of MLN64 is a cholesterol-binding domain. The present work was undertaken to determine which step of the intracellular cholesterol pathway MLN64 participates in. Using immunocytofluorescence, MLN64 colocalizes with LBPA, a lipid found specifically in late endosomes. Electron microscopy indicates that MLN64 is restricted to the limiting membrane of late endosomes. Microinjection or endocytosis of specific antibodies shows that the START domain of MLN64 is cytoplasmic. Deletion and mutagenesis experiments demonstrate that the amino-terminal part of MLN64 is responsible for its addressing. Although this domain does not contain conventional dileucine- or tyrosine-based targeting signals, we show that a dileucine motif (Leu(66)-Leu(67)) and a tyrosine residue (Tyr(89)) are critical for the targeting or the proper folding of the molecule. Finally, MLN64 colocalizes with cholesterol and Niemann Pick C1 protein in late endosomes. However, complementation assays show that MLN64 is not involved in the Niemann Pick C2 disease which, results in cholesterol lysosomal accumulation. Together, our results show that MLN64 plays a role at the surface of the late endosomes, where it might shuttle cholesterol from the limiting membrane to cytoplasmic acceptor(s).  相似文献   

2.
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.  相似文献   

3.
Delivery of endocytosed macromolecules to mammalian cell lysosomes occurs by direct fusion of late endosomes with lysosomes, resulting in the formation of hybrid organelles from which lysosomes are reformed. The molecular mechanisms of this fusion are analogous to those of homotypic vacuole fusion in Saccharomyces cerevisiae. We report herein the major roles of the mammalian homolog of yeast Vps18p (mVps18p), a member of the homotypic fusion and vacuole protein sorting complex. When overexpressed, mVps18p caused the clustering of late endosomes/lysosomes and the recruitment of other mammalian homologs of the homotypic fusion and vacuole protein sorting complex, plus Rab7-interacting lysosomal protein. The clusters were surrounded by components of the actin cytoskeleton, including actin, ezrin, and specific unconventional myosins. Overexpression of mVps18p also overcame the effect of wortmannin treatment, which inhibits membrane traffic out of late endocytic organelles and causes their swelling. Reduction of mVps18p by RNA interference caused lysosomes to disperse away from their juxtanuclear location. Thus, mVps18p plays a critical role in endosome/lysosome tethering, fusion, intracellular localization and in the reformation of lysosomes from hybrid organelles.  相似文献   

4.
MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics.  相似文献   

5.
6.
Actin is implicated in membrane fusion, but the precise mechanisms remain unclear. We showed earlier that membrane organelles catalyze the de novo assembly of F-actin that then facilitates the fusion between latex bead phagosomes and a mixture of early and late endocytic organelles. Here, we correlated the polymerization and organization of F-actin with phagosome and endocytic organelle fusion processes in vitro by using biochemistry and light and electron microscopy. When membrane organelles and cytosol were incubated at 37 degrees C with ATP, cytosolic actin polymerized rapidly and became organized into bundles and networks adjacent to membrane organelles. By 30-min incubation, a gel-like state was formed with little further polymerization of actin thereafter. Also during this time, the bulk of in vitro fusion events occurred between phagosomes/endocytic organelles. The fusion between latex bead phagosomes and late endocytic organelles, or between late endocytic organelles themselves was facilitated by actin, but we failed to detect any effect of perturbing F-actin polymerization on early endosome fusion. Consistent with this, late endosomes, like phagosomes, could nucleate F-actin, whereas early endosomes could not. We propose that actin assembled by phagosomes or late endocytic organelles can provide tracks for fusion-partner organelles to move vectorially toward them, via membrane-bound myosins, to facilitate fusion.  相似文献   

7.
Co-operative dynamics in organelles   总被引:1,自引:0,他引:1  
Some organelles produce elementary life phenomena which are characterized by the spontaneous formation and/or maintenance of ordered macroscopic dynamics like e.g. the shortening of sarcomeres in striated muscle and the transmission of electrical impulses in an axon. It has been widely accepted that such organelles are organized molecular systems where molecular elements work independently under constraint of a more or less rigid and regular structure of the system. On the other hand, such organelles should be regarded as self-organizing systems if the ordered macroscopic dynamics are self-organized. As the macroscopic dynamics gradually emerge, the microscopic dynamics of its elements become linked to each other through a feedback loop. It is crucial for the feedback loop to operate that the macroscopic dynamics are "free" in their behavior. In the present paper, it is pointed out that the traditional view of independent molecular elements has been obtained from experiments in which, by means of external constraint, the macroscopic dynamics is "clamped". Under such conditions, the self-organizing system may behave as an organized one. Based on synergetics we propose criterions for proving self-organizing systems, and, by applying the criterions, we conclude that skeletal muscle actomysin is a co-operative element in the sense of self-organization.  相似文献   

8.
Actin filaments that serve as "rails" for the myosin-based transport of membrane organelles [1-4] continuously turn over by concurrent growth and shortening at the opposite ends [5]. Although it is known that dynamics of actin filaments is essential for many of the actin cytoskeleton functions, the role of such dynamics in myosin-mediated organelle transport was never studied before. Here, we addressed the role of turnover of actin filaments in the myosin-based transport of membrane organelles by treating cells with the drugs that suppress actin-filament dynamics and found that such a suppression significantly inhibited organelle transport along the actin filaments without inhibiting their intracellular distribution or the activity of the myosin motors. We conclude that dynamics of actin filaments is essential for myosin-based transport of membrane organelles and suggest a previously unknown role of actin-filament dynamics in providing the "rails" for continuous organelle movement resulting in the increased distances traveled by membrane organelles along the actin filaments.  相似文献   

9.
Cholesterol is an essential lipid in eukaryotic cells and is present in membranes of all intracellular compartments. A major source for cellular cholesterol is internalized lipoprotein particles that are transported toward acidic late endosomes (LE) and lysosomes. Here the lipoprotein particles are hydrolyzed, and free cholesterol is redistributed to other organelles. The LE can contain over half of the cellular cholesterol and, as a major sorting station, can contain many cholesterol-binding proteins from the ABCA, STARD, and ORP families. Here, we show that metastatic lymph node 64 (MLN64, STARD3) and oxysterol-binding protein-related protein 1L (ORP1L) define two subpopulations of LE. MLN64 is present on a LE containing the cholesterol transporter ABCA3, whereas ORP1L localizes to another population of LE containing Niemann Pick type C1 (NPC1), a cholesterol exporter. Endocytosed cargo passes through MLN64/ABCA3-positive compartments before it reaches ORP1L/NPC1-positive LE. The MLN64/ABCA3 compartments cycle between LE and plasma membrane and frequently contact “later” ORP1L/NPC1-containing LE. We propose two stages of cholesterol handling in late endosomal compartments: first, cholesterol enters MLN64/ABCA3-positive compartments from where it can be recycled to the plasma membrane, and later, cholesterol enters ORP1L/NPC1 endosomes that mediate cholesterol export to the endoplasmic reticulum.  相似文献   

10.
This study demonstrates that the steroidogenic acute regulatory protein-related lipid transfer (START) domain-containing protein, MLN64, participates in intracellular cholesterol trafficking. Analysis of the intracellular itinerary of MLN64 and MLN64 mutants tagged with green fluorescent protein showed that the N-terminal transmembrane domains mediate endocytosis of MLN64 from the plasma membrane to late endocytic compartments. MLN64 constitutively traffics via dynamic NPC1-containing late endosomal tubules in normal cells; this dynamic movement was inhibited in cholesterol-loaded cells, and MLN64 is trapped at the periphery of cholesterol-laden lysosomes. The MLN64 START domain stimulated free cholesterol transfer from donor to acceptor mitochondrial membranes and enhanced steroidogenesis by placental mitochondria. Expression of a truncated form of MLN64 (DeltaSTART-MLN64), which contains N-terminal transmembrane domains but lacks the START domain, caused free cholesterol accumulation in lysosomes and inhibited late endocytic dynamics. The DeltaSTART-MLN64 dominant negative protein was located at the surface of the cholesterol-laden lysosomes. This dominant negative mutant suppressed steroidogenesis in COS cells expressing the mitochondrial cholesterol side chain cleavage system. We conclude that MLN64 participates in mobilization and utilization of lysosomal cholesterol by virtue of the START domain's role in cholesterol transport.  相似文献   

11.
<正>Cytokinesis is the final stage of cell division that generates two daughter cells(Fededa and Gerlich,2012).The textbook version di-vides the plant and animal cell cytokinesis into two categories.Plant cells form a mid-zone phragmoplast via vesicle delivering and fusion,and cell wall materials are thus deposited.Animal cells form actomyosin contractile rings,which are the sole force that drives abscission.However,recent evidence has been mounting and pinpointing a pivotal role of membrane transport and subse-  相似文献   

12.
Aged cells have significantly fewer food vacuoles and ingest fewer bacteria than young cells. Loss of food vacuoles was explained by a decreasing difference in the food vacuole formation and excretion rates; the formation rate declined more rapidly than the excretion rate, approaching equivalence at 160 fissions, when the proportion of cells with no food vacuoles, in the presence of excess food, abruptly increased. A model for cellular aging is presented in which control of organelle numbers and cyclical interactions between the nucleus and cytoplasm may be of critical importance.  相似文献   

13.
The Hermansky–Pudlak syndrome defines a group of genetic disorders characterized by defective lysosome-related organelles such as melanosomes and platelet dense bodies. Hermansky–Pudlak syndrome can be caused by mutations of at least four genes in humans and 15 genes in mice. One of these genes is mutated in the pallid mouse strain and encodes a novel protein named pallidin (L. Huang, Y. M. Kuo and J. Gitschier, Nat Genet 1999; 23: 329–332). Pallidin has no homology to any other known protein and no recognizable functional motifs. We have conducted a biochemical characterization of human pallidin using a newly developed polyclonal antibody. We show that pallidin is a ubiquitously expressed ∼ 25 kDa protein found both in the cytosol and peripherally associated to membranes. Sedimentation velocity analyses show that native pallidin has a sedimentation coefficient of ∼ 5.1 S, much larger than expected from the molecular mass of the pallidin polypeptide. In line with this observation, cosedimentation and coprecipitation analyses reveal that pallidin is part of a hetero-oligomeric complex. One of the subunits of this complex is the product of another Hermansky–Pudlak syndrome gene, muted. Fibroblasts derived from the muted mouse strain exhibit reduced levels of pallidin, suggesting that the absence of the muted protein destabilizes pallidin. These observations indicate that pallidin is a subunit of a novel multi-protein complex involved in the biogenesis of lysosome-related organelles.  相似文献   

14.
Biogenesis of lysosome‐related organelles (LROs) complex‐1 (BLOC‐1) is an eight‐subunit complex involved in lysosomal trafficking. Interacting proteins of these subunits expand the understanding of its biological functions. With the implementation of the naïve Bayesian analysis, we found that a human uncharacterized 20 kDa coiled‐coil KxDL protein, KXD1, is a BLOS1‐interacting protein. In vitro binding assays confirmed the interaction between BLOS1 and KXD1. The mouse KXD1 homolog was widely expressed and absent in Kxd1 knockout (KO) mice. BLOS1 was apparently reduced in Kxd1‐KO mice. Mild defects in the melanosomes of the retinal pigment epithelia and in the platelet dense granules of the Kxd1‐KO mouse were observed, mimicking a mouse model of mild Hermansky–Pudlak syndrome that affects the biogenesis of LROs.  相似文献   

15.
MLN64 is a late endosomal membrane protein containing a carboxyl-terminal cholesterol binding START domain and is presumably involved in intracellular cholesterol transport. In the present study, we have cloned a human cDNA encoding a novel protein that we called MENTHO as an acronym for MLN64 N-terminal domain homologue because this protein is closely related to the amino-terminal half of MLN64. MLN64 and MENTHO share 70% identity and 83% similarity in an original protein domain encompassing 171 amino acids that we designated as the MENTAL (MLN64 N-terminal) domain. By translation initiation scanning MENTHO is synthesized as two isoforms of 234 (alpha) and 227 (beta) amino acids that can be phosphorylated. As MLN64, MENTHO is ubiquitously expressed and is located in the membrane of late endosomes, its amino and carboxyl-terminal extremities projecting toward the cytoplasm. We show that MENTHO overexpression does not rescue the Niemann-Pick type C lipid storage phenotype. However, MENTHO overexpression alters severely the endocytic compartment by leading at steady state to the accumulation of enlarged endosomes. These results indicate that in addition to its previously established function in addressing and anchoring proteins to the membrane of late endosomes, the MENTAL domain possesses an intrinsic biological function in endocytic transport.  相似文献   

16.
1. This article summarizes some of the recent advances in the understanding of structural and functional properties of isolated small synaptic vesicles (SSV) from mammalian brain. 2. SSV contain a set of integral membrane proteins which are highly specific for this organelle and which occur on all SSV of the central and peripheral nervous system irrespective of their transmitter content. In contrast, these proteins are absent from the membrane of peptide-containing large dense-core vesicles indicating that the two types of organelle have a different membrane composition. The availability of antibodies for these proteins has allowed the evaluation of the purity of vesicle preparations which is instrumental for functional studies. 3. Recent advances in the study of neurotransmitter uptake have revealed that SSV contain specific carrier systems for glutamate and GABA. They are different from the transporters of the plasma membrane, and are dependent on the energy of a proton electrochemical gradient. The uptake of glutamate has been characterized in some detail and the mechanistic and physiological implications of these findings are discussed.  相似文献   

17.
The structure of cellular organelles, in particular those involved in endocytosis, was studied by electron microscopy with hydrated cryosections. In this technique no chemical treatment is used, and the native structure of organelles can be observed in sections viewed at temperatures below -140 degrees C, using a cold stage accessory on the electron microscope. The compartments of the endocytic pathway were prelabeled with gold markers in the living cell, facilitating the identification of different structures in the cryosections. The structure of most identifiable cellular organelles, including those involved in endocytosis, appeared very similar in the hydrated cryosections to that seen after conventional plastic and cryosections of chemically fixed cells. In particular, the internal membranes of the structure we refer to as the prelysosomal compartment (Griffiths et al., Cell 52, 329-341 (1988] could be clearly visualized in these sections indicating that the organization of these membranes is not a consequence of the chemical fixation process.  相似文献   

18.
The early events that take place during the internalization of infectious pancreatic necrosis virus (IPNV) into Chinook salmon embryo cells (CHSE-214) were analyzed ultrastructurally. Endocytic tracers were employed in order to characterize the organization of endocytic organelles in CHSE-214 cells, as well its relation to the IPNV penetration. Results demonstrate that IPNV appear internalized within vesicular compartments which are located peripherally in CHSE-214 cells. Despite the high rate of infectious multiplicity few virus particles were detected inside the cells. Endocytic tracer labelling of tubulovesicular elements and endosomes of host cells showed a well developed endocytic apparatus. Results suggest that endocytosis may be involved during the initiating events in the productive IPNV infection.  相似文献   

19.
The movement of organelles and vesicles in pollen tubes depends on F-actin. However, the molecular mechanism through which plant myosin XI drives the movement of organelles is still controversial, and the relationship between myosin XI and vesicle movement in pollen tubes is also unclear. In this study, we found that the siliques of the myosin xi-b/e mutant were obviously shorter than those of the wild-type (WT) and that the seed set of the mutant was severely deficient. The pollen tube growth of myosin xi-b/e was significantly inhibited both in vitro and in vivo. Fluorescence recovery after photobleaching showed that the velocity of vesicle movement in the pollen tube tip of the myosin xi-b/e mutant was lower than that of the WT. It was also found that peroxisome movement was significantly inhibited in the pollen tubes of the myosin xi-b/e mutant, while the velocities of the Golgi stack and mitochondrial movement decreased relatively less in the pollen tubes of the mutant. The endoplasmic reticulum streaming in the pollen tube shanks was not significantly different between the WT and the myosin xi-b/e mutant. In addition, we found that myosin XI-B-GFP colocalized obviously with vesicles and peroxisomes in the pollen tubes of Arabidopsis. Taken together, these results indicate that myosin XI-B may bind mainly to vesicles and peroxisomes, and drive their movement in pollen tubes. These results also suggest that the mechanism by which myosin XI drives organelle movement in plant cells may be evolutionarily conserved compared with other eukaryotic cells.  相似文献   

20.
Src family tyrosine kinases respond to a variety of signals by regulating the organization of the actin cytoskeleton. Here, we show that during early oogenesis Src64 mutations lead to uneven accumulation of cortical actin, defects in fusome formation, mislocalization of septins, defective transport of Orb protein into the oocyte, and possible defects in cell division. Similar mutant phenotypes suggest that Src64, the Tec29 tyrosine kinase, and the actin crosslinking protein Kelch act together to regulate actin crosslinking, much as they do later during ring canal growth. Condensation of the oocyte chromatin into a compact karyosome is also defective in Src64, Tec29, and kelch mutants and in mutants for spire and chickadee (profilin), genes that regulate actin polymerization. These data, along with changes in G-actin accumulation in the oocyte nucleus, suggest that Src64 is involved in a nuclear actin function during karyosome condensation. Our results indicate that Src64 regulates actin dynamics at multiple stages of oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号