首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A niaD gene encoding nitrate reductase was isolated from Aspergillus oryzae KBN616 and sequenced. The structural gene comprises 2973 bp and 868 amino acids, which showed a high degree of similarity to nitrate reductases from other filamentous fungi. The coding sequence is interrupted by six introns varying in size from 48 to 98 bp. The intron positions are all conserved among the niaD genes from A. oryzae, Aspergillus nidulans, and Aspergillus niger. A homologous transformation system was developed for an industrial shoyu koji mold, A. oryzae KBN616, based on the nitrate reductase (niaD) of the nitrate assimilation pathway.  相似文献   

2.
Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium.  相似文献   

3.
The two enzymes involved in the assimilatory pathway of nitrate in Azotobacter vinelandii are corregulated. Nitrate reductase and nitrite reductase are inducible by nitrate and nitrite. Ammonium represses induction by nitrate of both reductases. Repression by ammonium is higher in media containing 2-oxo-glutarate as carbon source than in media containing sucrose. Mutants in the gene ntrC lost nitrate and nitrite reductase simultaneously. Ten chlorate-resistant mutants with a new phenotype were isolated. In media without ammonium they had a normal phenotype, being sensitive to the toxic effect of chlorate. In media containing low ammonium concentrations they were resistant to chlorate. These mutants seem to be affected in the repression of nitrate and nitrite reductases by ammonium.  相似文献   

4.
The aim of this study was to enable the polymerase chain reaction (PCR) amplification of DNA fragments within endoglucanase gene(s) of Torula thermophila, by using degenerate primers so that the amplified fragment(s) could be used as homologous probe(s) for cloning of full-length endoglucanase gene(s). The design of the degenerate PCR primers was mainly based on the endoglucanase sequences of other fungi. The endoglucanase gene sequence of Humicola insolens was the only sequence from a thermophilic fungus publicly available in the literature. Therefore, the endoglucanase sequences of the two Trichoderma species, Trichoderma reesei and Trichoderma longibrachiatum, were used to generalize the primers. PCR amplification of T. thermophila genomic DNA with these primers resilied in a specific amplification. The specificity of the amplified fragment was shown by Southern hybridization analysis using egl3 gene of T. reesei as probe. This result suggested that the degenerate primers used in this study may be of value for studies aimed at cloning of endoglucanase genes from a range of related fungi.  相似文献   

5.
The haloarchaeon Haloferax mediterranei is able to assimilate nitrate or nitrite using the assimilatory nitrate pathway. An assimilatory nitrate reductase (Nas) and an assimilatory nitrite reductase (NiR) catalyze the first and second reactions, respectively. The genes involved in this process are transcribed as two messengers, one polycistronic (nasABC; nasA encodes Nas) and one monocistronic (nasD; codes for NiR). Here we report the Hfx mediterranei growth as well as the Nas and NiR activities in presence of high nitrate, nitrite and salt concentrations, using different approaches such as physiological experiments and enzymatic activities assays. The nasA and nasD expression profiles are also analysed by real-time quantitative PCR. The results presented reveal that the assimilatory nitrate/nitrite pathway in Hfx mediterranei takes place even if the salt concentration is higher than those usually present in the environments where this microorganism inhabits. This haloarchaeon grows in presence of 2 M nitrate or 50 mM nitrite, which are the highest nitrate and nitrite concentrations described from a prokaryotic microorganism. Therefore, it could be attractive for bioremediation applications in sewage plants where high salt, nitrate and nitrite concentrations are detected in wastewaters and brines.  相似文献   

6.
The requirement for the mobA gene in key assimilatory and respiratory nitrogen metabolism of Pseudomonas aeruginosa PAO1 was investigated by mutational analysis of PA3030 (mobA; MoCo guanylating enzyme), PA1779 (nasA; assimilatory nitrate reductase), and PA3875 (narG; respiratory nitrate reductase). The mobA mutant was deficient in both assimilatory and respiratory nitrate reductase activities, whereas xanthine dehydrogenase activity remained unaffected. Thus, P. aeruginosa requires both the molybdopterin (MPT) and molybdopterin guanine dinucleotide (MGD) forms of the molybdenum cofactor for a complete spectrum of nitrogen metabolism, and one form cannot substitute for the other. Regulation studies using a Φ(PA3030-lacZGm) reporter strain suggest that expression of mobA is not influenced by the type of nitrogen source or by anaerobiosis, whereas assimilatory nitrate reductase activity was detected only in the presence of nitrate.  相似文献   

7.
Summary The nit-3 gene of the filamentous fungus Neurospora crassa encodes the enzyme nitrate reductase, which catalyzes the first reductive step in the highly regulated nitrate assimilatory pathway. The nucleotide sequence of nit-3 was determined and translates to a protein of 982 amino acid residues with a molecular weight of approximately 108 kDa. Comparison of the deduced nit-3 protein sequence with the nitrate reductase protein sequences of other fungi and higher plants revealed that a significant amount of homology exists, particularly within the three cofactor-binding domains for molybdenum, heme and FAD. The synthesis and turnover of the nit-3 mRNA were also examined and found to occur rapidly and efficiently under changing metabolic conditions.  相似文献   

8.
Ten Fusarium sporotrichioides strains from different geographic regions were analyzed by RAPD in order to detect DNA loci potentially suitable as new markers for taxonomic characterization and identification of toxigenic Fusarium fungi. Three monomorphic fragments were selected from PCR amplificates obtained with one of the standard RAPD primers and sequenced. Analysis of the sequences enabled the development of specific SCAR markers for identification of Fusarium fungi at the level of species groups characterized by similar profiles of produced mycotoxins.  相似文献   

9.
Analysis of arbuscular mycorrhizal (AM) fungal diversity through morphological characters of spores and intraradicular hyphae has suggested previously that preferential associations occur between plants and AM fungi. A field experiment was established to investigate whether AM fungal diversity is affected by different host plants in upland grasslands. Indigenous vegetation from plots in an unimproved pasture was replaced with monocultures of either Agrostis capillaris or Lolium perenne. Modification of the diversity of AM fungi in these plots was evaluated by analysis of partial sequences in the large subunit (LSU) ribosomal RNA (rDNA) genes. General primers for AM fungi were designed for the PCR amplification of partial sequences using DNA extracted from root tissues of A. capillaris and L. perenne. PCR products were used to construct LSU rDNA libraries. Sequencing of randomly selected clones indicated that plant roots were colonised by AM fungi belonging to the genera Glomus, Acaulospora and Scutellospora. There was a difference in the diversity of AM fungi colonising roots of A. capillaris and L. perenne that was confirmed by PCR using primers specific for each sequence group. These molecular data suggest the existence of a selection pressure of plants on AM fungal communities.  相似文献   

10.
11.
 Analysis of the community of arbuscular mycorrhizal (AM) fungi in roots of Fragaria vesca growing in a heavy metal contaminated site was carried out on a Zn waste site near Chrzanow (southern Poland). The waste substratum was characterized by high contents of Pb, Zn, Cd, Cu and As, and by low levels of N, P and organic matter. Spores of Glomales were isolated by wet sieving and DNA was isolated from individual spores. Nested polymerase chain reaction (PCR) with taxon-specific primers was used to identify the species Glomus mosseae, Glomus intraradices and Glomus claroideum. Spores of other fungi were morphologically characterized and new taxon-discriminating molecular probes were developed for two of them (Glomus sp. HM-CL4 and HM-CL5) based on variations in the large ribosomal subunit (25S rDNA). High sequence similarities were found between Glomus sp. HM-CL4 and Glomus gerdemanii, and between Glomus sp. HM-CL5 and Glomus occultum. The designed primers were used to characterize the population of AM fungi colonizing the roots of F. vesca collected from the Zn waste site. The analysis, carried out on roots stained with trypan blue, showed that the most effective colonizer was closely related to G. gerdemannii. G. claroideum and the G. occultum-like fungus were slightly less common whilst frequencies of G. intraradices and G. mosseae in roots were much lower. The analysis of mycorrhiza stained with rhodizoniate to localize heavy metal accumulation showed that the stain does not influence the PCR reaction. Seventy percent of the root samples containing positively stained fungal hyphae were found to be colonized by G. mosseae. The data obtained demonstrate the usefulness of nested PCR for studies carried out in polluted areas. It will enable selection of AM fungi which are able to colonize plant roots under heavy metal stress conditions, as well as the identification of fungi showing high in situ accumulation of potentially toxic elements. Accepted: 7 July 2000  相似文献   

12.
Most plant species in mixed grassland vegetation are colonized by arbuscular mycorrhizal (AM) fungi. Previous studies have reported differences in host preferences among AM fungi, although the fungi are known to lack host specificity. In the present study, the distribution of phylogenetic groups of AM fungi belonging to a clade of Glomus species was studied in five plant species from a coastal grassland in Denmark. The occurrence of the fungi was determined by PCR analyses of fungal large subunit ribosomal DNA sequences amplified from root fragments using a specific primer set. The results showed that the dominant Glomus species were able to colonize all the studied plant species, supporting the view that the AM fungi represent a large underground interconnecting mycelial network.  相似文献   

13.
The complete assimilatory nitrate reductase (NR) gene from the pennate diatom Phaeodactylum triconutum Bohlin was sequenced from cDNA and compared with NR sequences from fungi, green algae, vascular plants, and the recently sequenced genome of the centric diatom Thalassiosira pseudonana Hasle and Heimdal CCMP1335. In all the major eukaryotic nitrate reductase (Euk‐NR) functional domains, diatom NR gene sequences are generally 50%–60% identical to plant and alga sequences at the amino acid level. In the less conserved N‐terminal, hinge 1, and hinge 2 regions, homology to other NR sequences is weak, generally<30%. Two PCR primer sets capable of amplifying Euk‐NR from plants, algae, and diatoms were designed. One primer set was used to amplify a 750‐base pair (bp) NR fragment from the cDNA of five additional diatom strains. The PCR amplicon spans part of the well‐conserved dimer interface region, the more variable hinge 1 region, and part of the conserved cytochrome b heme binding region. The second primer set, targeted to the dimer region, was used to amplify an approximately 400‐bp fragment of the NR gene from DNA samples collected in Monterey Bay, California and in central New Jersey inner continental shelf (LEO‐15 site) waters. Only diatom‐like NR sequences were recovered from Monterey Bay samples, whereas LEO‐15 samples yielded NR sequences from a range of photosynthetic eukaryotes. The prospect of using DNA‐ and RNA‐based methods to target the NR genes of diatoms specifically is a promising approach for future physiological and ecological experiments.  相似文献   

14.
15.
The prototrophic bacterium Rhodobacter sphaeroides DSM 158 has a periplasmic nitrate reductase which is induced by nitrate and it is not repressed by ammonium or oxygen. In a Tn5 mutant lacking nitrate reductase activity, transposon insertion is localized in a 1.2 kb EcoRI fragment. A 0.6 kb BamHI-EcoRI segment of this region was used as a probe to isolate, from the wild-type strain, a 6.8 kb Pstl fragment carrying the putative genes coding for the periplasmic nitrate reductase. In vivo protein expression and DNA sequence analysis reveal the presence in this region of three genes, napABC, probably organized in an operon. These genes are required for nitrate reduction, as deduced by mutational and complementation studies. The napA gene codes for a protein with a high homology to the periplasmic nitrate reductase from Alcali-genes eutrophus and, to a lesser extent, to other prokaryotic nitrate reductases and molybdenum-containing enzymes. The napB gene product has two haem c-binding sites and shows a high homology with the cytochrome c-type subunit of the periplasmic nitrate reductase from A. eutrophus. NAPA and NAPB proteins appear to be translated with signal peptides of 29 and 24 residues, respectively, indicating that mature proteins are located in the periplasm. The napC gene codes for a 25 kDa protein with a transmembrane sequence of 17 hydrophobic residues. NAPC has four haem c-binding sites and is homologous to the membrane-bound c-type cytochromes encoded by Pseudomonas stutzeri nirT and Escherichia coli torC genes. The phenotypes of defined insertion mutants constructed for each gene also indicate that periplasmic nitrate reductase from R. sphaeroides DSM 158 is a dimeric complex of a 90kDa catalytic subunit (NAPA) and a 15kDa cytochrome c (NAPB), which receives electrons from a membrane-anchored tetrahaem protein (NAPC), thus allowing electron flow between membrane and periplasm. This nitrate-reducing system differs from the assimilatory and respiratory bacterial nitrate reductases at the level of cellular localization, regulatory properties, biochemical characteristics and gene organization.  相似文献   

16.
RT-PCR克隆甜菜硝酸还原酶cDNA全长序列及分析   总被引:3,自引:1,他引:2  
根据GenBank中已公布的甜菜(Beta vulgaris)硝酸还原酶(nitrate reductase)基因序列(gb∣ABW05098.1∣),设计引物,以50 mmol·L-1 KNO3溶液处理的甜菜幼苗为材料,从总RNA中通过RT-PCR分离得到一个硝酸还原酶基因,其cDNA长2 760 bp,包含了完整的基因编码序列,与已公布的硝酸还原酶基因序列相似性达99%。Southern杂交分析表明,硝酸还原酶基因在甜菜基因组中可能以两个拷贝或低拷贝形式存在。根据其编码的氨基酸序列,利用生物信息学预测了其亚细胞定位和蛋白质的三级结构。  相似文献   

17.
Apparent Km values for nitrite reductase, glutamic dehydrogenase, and nitrate reductase are of the order 10?4 molar for nitrite, ammonia, and nitrate, respectively while half-saturation constants for the corresponding uptake mechanisms approximate 10?6 molar. Ammonium and nitrate are accumulated in the vacuolated cells of the diatom (about 10 and 40 mmoles/liter cell volume, respectively) and these intracellular pools serve as substrate for the assimilatory enzymes. Nitrite is either not accumulated or is concentrated, in a very small cellular compartment. Ammonium and nitrate in the external medium exert modifying effects on uptake and assimilatory mechanisms which can be distinguished from effects of the ions accumulated within the cells. Several of these effects are described and fitted into a general scheme of nitrogen assimilation by D. brightwellii.  相似文献   

18.
Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitrite, to the periplasm. Our complementation studies, using a mutant lacking the nitrate/proton symporter NasA from the assimilatory nitrate reductase pathway, support that NarK1 functions as a nitrate/proton symporter while NarK2 is a nitrate/nitrite antiporter. Through the same experimental system, we find that Escherichia coli NarK and NarU can complement deletions in both narK and nasA in P. denitrificans, suggesting that, while these proteins are most likely nitrate/nitrite antiporters, they can also act in the net uptake of nitrate. Finally, we argue that primary sequence analysis and structural modelling do not readily explain why NasA, NarK1 and NarK2, as well as other transporters from this protein family, have such different functions, ranging from net nitrate uptake to nitrate/nitrite exchange.  相似文献   

19.
We examined the phylogenetic position of an arbuscular mycorrhizal fungus which produces two types of spore,Acaulospora gerdemannii andGlomus leptotichum, based upon the DNA sequence of the 18S rRNA gene. DNA was extracted separately from bothGlomus-like orAcaulospora-like spores and partial 5′-terminus segments of 18S rRNA gene were amplified by the PCR method. Several clones derived from each spore type were sequenced and compared. The sequences from both spore types agreed well, confirming that these morphologically different spores were formed by the same fungus. Nucleotide substitutions were found among several clones, suggesting polymorphism of the rRNA gene in glomalean fungi. Further phylogenetic analysis based upon the whole sequence of the 18S rRNA gene showed thatA. gerdemannii may be within the order Glomales but is far from the fungi that have been analyzed and probably should be in a new family.  相似文献   

20.
Arbuscular mycorrhizal fungi influence the growth, morphology, and fitness of a variety of plant species, but little is known of the arbuscular mycorrhizal (AM) fungal associations of plant species in forest canopies. Plant species' associations with AM fungi are most often elucidated by examining the roots for fungal structures; however, morphological data may provide a limited resolution on a plant's mycorrhizal status. We combined a traditional staining technique with a molecular marker (the 18S ribosomal gene) to determine whether or not a variety of epiphytic bromeliads form arbuscular mycorrhizal fungal associations. Using these methods we show that the epiphytic bromeliad Vriesea werkleana forms arbuscular mycorrhizal fungal associations with members of the genus Glomus. AM fungal sequences of this plant species formed three distinct clades nested within a larger Glomus clade; two of the clades did not group with any previously sequenced lineage of Glomus. Novel clades may represent novel species. Although Vriesea werkleana is associated with multiple AM fungal species, each individual plant is colonized by a single lineage. The combination of morphological and molecular methods provides a practical approach to the characterization of the mycorrhizal status of epiphytic bromeliads, and perhaps other tropical epiphytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号