首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical forces play an important role in modulating cell function and shaping tissue structure. Mechanotransduction, the process by which cells transduce physical force-induced signals into biochemical responses, is critical for mediating adaptations to mechanical loading in connective tissues. While much is known about mechanotransduction in cells involving forces delivered through extracellular matrix proteins and integrins, there is limited understanding of how mechanical signals are propagated through the interconnected cellular networks found in tissues and organs. We propose that intercellular mechanotransduction is a critical component for achieving coordinated remodeling responses to force application in connective tissues. We examine here recent evidence on different pathways of intercellular mechanotransduction and suggest a general model for how multicellular structures respond to mechanical loading as an integrated unit.  相似文献   

2.
Mechanical biochemistry of proteins one molecule at a time   总被引:1,自引:0,他引:1  
The activity of proteins and their complexes often involves the conversion of chemical energy (stored or supplied) into mechanical work through conformational changes. Mechanical forces are also crucial for the regulation of the structure and function of cells and tissues. Thus, the shape of eukaryotic cells (and by extension, that of the multicellular organisms they form) is the result of cycles of mechanosensing, mechanotransduction, and mechanoresponse. Recently developed single-molecule atomic force microscopy techniques can be used to manipulate single molecules, both in real time and under physiological conditions, and are ideally suited to directly quantify the forces involved in both intra- and intermolecular protein interactions. In combination with molecular biology and computer simulations, these techniques have been applied to characterize the unfolding and refolding reactions in a variety of proteins. Single-molecule mechanical techniques are providing fundamental information on the structure and function of proteins and are becoming an indispensable tool to understand how these molecules fold and work.  相似文献   

3.
Costameres, focal adhesions, and cardiomyocyte mechanotransduction   总被引:1,自引:0,他引:1  
Mechanotransduction refers to the cellular mechanisms by which load-bearing cells sense physical forces, transduce the forces into biochemical signals, and generate appropriate responses leading to alterations in cellular structure and function. This process affects the beat-to-beat regulation of cardiac performance but also affects the proliferation, differentiation, growth, and survival of the cellular components that comprise the human myocardium. This review focuses on the experimental evidence indicating that the costamere and its structurally related structure the focal adhesion complex are critical cytoskeletal elements involved in cardiomyocyte mechanotransduction. Biochemical signals originating from the extracellular matrix-integrin-costameric protein complex share many common features with those signals generated by growth factor receptors. The roles of key regulatory kinases and other muscle-specific proteins involved in mechanotransduction and growth factor signaling are discussed, and issues requiring further study in this field are outlined.  相似文献   

4.
Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.  相似文献   

5.
6.
Integrins and extracellular matrix in mechanotransduction   总被引:1,自引:0,他引:1  
Integrins bind extracellular matrix fibrils and associate with intracellular actin filaments through a variety of cytoskeletal linker proteins to mechanically connect intracellular and extracellular structures. Each component of the linkage from the cytoskeleton through the integrin-mediated adhesions to the extracellular matrix therefore transmits forces that may derive from both intracellular, myosin-generated contractile forces and forces from outside the cell. These forces activate a wide range of signaling pathways and genetic programs to control cell survival, fate, and behavior. Additionally, cells sense the physical properties of their surrounding environment through forces exerted on integrin-mediated adhesions. This article first summarizes current knowledge about regulation of cell function by mechanical forces acting through integrin-mediated adhesions and then discusses models for mechanotransduction and sensing of environmental forces.  相似文献   

7.
How do cells process environmental cues to make decisions? This simple question is still generating much experimental and theoretical work, at the border of physics, chemistry and biology, with strong implications in medicine. The purpose of mechanobiology is to understand how biochemical and physical cues are turned into signals through mechanotransduction. Here, we review recent evidence showing that (i) mechanotransduction plays a major role in triggering signalling cascades following cell–neighbourhood interaction; (ii) the cell capacity to continually generate forces, and biomolecule properties to undergo conformational changes in response to piconewton forces, provide a molecular basis for understanding mechanotransduction; and (iii) mechanotransduction shapes the guidance cues retrieved by living cells and the information flow they generate. This includes the temporal and spatial properties of intracellular signalling cascades. In conclusion, it is suggested that the described concepts may provide guidelines to define experimentally accessible parameters to describe cell structure and dynamics, as a prerequisite to take advantage of recent progress in high-throughput data gathering, computer simulation and artificial intelligence, in order to build a workable, hopefully predictive, account of cell signalling networks.  相似文献   

8.
The actin cytoskeleton plays an essential role in a cell's ability to generate and sense forces, both internally and in interaction with the outside world. The transduction of mechanical cues into biochemical reactions in cells, in particular, is a multi-scale process which requires a variety of approaches to be understood. This review focuses on understanding how mechanical stress applied to an actin filament can affect its assembly dynamics. Today, experiments addressing this issue at the scale of individual actin filaments are emerging and bring novel insight into mechanotransduction. For instance, recent data show that actin filaments can act as mechanosensors, as an applied tension or curvature alters their conformation and their affinity for regulatory proteins. Filaments can also transmit mechanical tension to other proteins, which consequently change the way they interact with the filaments to regulate their assembly. These results provide evidence for mechanotransduction at the scale of individual filaments, showing that forces participate in the regulation of filament assembly and organization. They bring insight into the elementary events coupling mechanics and biochemistry in cells. The experiments presented here are linked to recent technical developments, and certainly announce the advent of more exciting results in the future.  相似文献   

9.
Mechanobiology of tendon   总被引:9,自引:0,他引:9  
Tendons are able to respond to mechanical forces by altering their structure, composition, and mechanical properties--a process called tissue mechanical adaptation. The fact that mechanical adaptation is effected by cells in tendons is clearly understood; however, how cells sense mechanical forces and convert them into biochemical signals that ultimately lead to tendon adaptive physiological or pathological changes is not well understood. Mechanobiology is an interdisciplinary study that can enhance our understanding of mechanotransduction mechanisms at the tissue, cellular, and molecular levels. The purpose of this article is to provide an overview of tendon mechanobiology. The discussion begins with the mechanical forces acting on tendons in vivo, tendon structure and composition, and its mechanical properties. Then the tendon's response to exercise, disuse, and overuse are presented, followed by a discussion of tendon healing and the role of mechanical loading and fibroblast contraction in tissue healing. Next, mechanobiological responses of tendon fibroblasts to repetitive mechanical loading conditions are presented, and major cellular mechanotransduction mechanisms are briefly reviewed. Finally, future research directions in tendon mechanobiology research are discussed.  相似文献   

10.
Cell mechanics and mechanotransduction: pathways, probes, and physiology   总被引:10,自引:0,他引:10  
Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces. cytoskeleton; micromanipulation; cell signaling  相似文献   

11.
Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.  相似文献   

12.
Cell shape regulates collagen type I expression in human tendon fibroblasts   总被引:1,自引:0,他引:1  
Understanding the relationship between cell shape and cellular function is important for study of cell biology in general and for regulation of cell phenotype in tissue engineering in particular. In this study, microcontact printing technique was used to create cell-adhesive rectangular and circular islands. The rectangular islands had three aspect ratios: 19.6, 4.9, and 2.2, respectively, whereas circular islands had a diameter of 50 microm. Both rectangular and circular islands had the same area of 1960 microm(2). In culture, we found that human tendon fibroblasts (HTFs) assumed the shapes of these islands. Quantitative immunofluorescence measurement showed that more elongated cells expressed higher collagen type I than did less stretched cells even though cell spreading area was the same. This suggests that HTFs, which assume an elongated shape in vivo, have optimal morphology in terms of expression of collagen type I, which is a major component of normal tendons. Using immunohistochemistry along with cell traction force microscopy (CTFM), we further found that these HTFs with different shapes exhibited variations in actin cytoskeletal structure, spatial arrangement of focal adhesions, and spatial distribution and magnitude of cell traction forces. The changes in the actin cytoskeletal structure, focal adhesion distributions, and traction forces in cells with different shapes may be responsible for altered collagen expression, as they are known to be involved in cellular mechanotransduction.  相似文献   

13.
Mechanotransduction plays a critical role in intracellular functioning—it allows cells to translate external physical forces into internal biochemical activities, thereby affecting processes ranging from proliferation and apoptosis to gene expression and protein synthesis in a complex web of interactions and reactions. Accordingly, aberrant mechanotransduction can either lead to, or be a result of, a variety of diseases or degenerative states. In this review, we provide an overview of mechanotransduction in the context of intervertebral discs, with a focus on the latest methods of investigating mechanotransduction and the most recent findings regarding the means and effects of mechanotransduction in healthy and degenerative discs. We also provide some discussion of potential directions for future research and treatments.  相似文献   

14.
Cells are exposed to a variety of mechanical cues, including forces from their local environment and physical properties of the tissue. These mechanical cues regulate a vast number of cellular processes, relying on a repertoire of mechanosensors that transduce forces into biochemical pathways through mechanotransduction. Forces can act on different parts of the cell, carry information regarding magnitude and direction, and have distinct temporal profiles. Thus, the specific cellular response to mechanical forces is dependent on the ability of cells to sense and transduce these physical parameters. In this review, we will highlight recent findings that provide insights into the mechanisms by which different mechanosensors decode mechanical cues and how their coordinated response determines the cellular outcomes.  相似文献   

15.
Microbial responses to microgravity and other low-shear environments.   总被引:2,自引:0,他引:2  
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.  相似文献   

16.
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.  相似文献   

17.
Blood cells are subjected to various mechanical forces; including pressure, flow, shear force, gravity, and forces acting against them with varying stiffness (eg. blood vessel wall). Scientists have discovered that these forces have profound effects on cellular growth, differentiation, secretion of cytokines, cell death, and migration. These processes are called mechanotransduction, a conversion of mechanical forces to biochemical signals. In this article the author reviews biophysical forces that affect biological functions of blood cells and their responses in normal physiology and pathophysiology. Although input (forces) and output (cellular responses) have been well studied by utilizing recently developed various force-generating devices, the molecular mechanism of mechanotransudction is still a mystery. This is because reconstructing molecular interaction in the presence of mechanical forces in vitro is highly challenging and until now the molecular dynamics involved in structural changes caused by these forces are largely unknown. Nevertheless, the author has reviewed a few examples of potential structural effects on the molecular mechanism of mechanotransduction.  相似文献   

18.
This article is a summary of a lecture presented at a symposium on "Mechanics and Chemistry of Biosystems' in honor of Professor Y.C. Fung that convened at the University of California, Irvine in February 2004. The article reviews work from our laboratory that focuses on the mechanism by which mechanical and chemical signals interplay to control how individual cells decide whether to grow, differentiate, move, or die, and thereby promote pattern formation during tissue morphogenesis. Pursuit of this challenge has required development and application of new microtechnologies, theoretical formulations, computational models and bioinformatics tools. These approaches have been used to apply controlled mechanical stresses to specific cell surface molecules and to measure mechanical and biochemical responses; to control cell shape independently of chemical factors; and to handle the structural, hierarchical and informational complexity of living cells. Results of these studies have changed our view of how cells and tissues control their shape and mechanical properties, and have led to the discovery that integrins and the cytoskeleton play a central role in cellular mechanotransduction. Recognition of these critical links between mechanics and cellular biochemistry should lead to novel strategies for the development of new drugs and engineered tissues, as well as biomimetic microdevices and nanotechnologies that more effectively function within the context of living tissues.  相似文献   

19.
20.
In development and in homeostatic maintenance of tissues, stem cells and progenitor cells are constantly subjected to forces. These forces can lead to significant changes in gene expression and function of stem cells, mediating self-renewal, lineage specification, and even loss of function. One of the ways that has been proposed to mediate these functional changes in stem cells is nuclear mechanotransduction — the process by which forces are converted to signals in the nucleus. The purpose of this review is to discuss the means by which mechanical signals are transduced into the nucleus, through the linker of nucleoskeleton and cytoskeleton (LINC) complex and other nuclear envelope transmembrane (NET) proteins, which connect the cytoskeleton to the nucleus. We discuss how LINC/NETs confers tissue-specific mechanosensitivity to cells and further elucidate how LINC/NETs acts as a control center for nuclear mechanical signals, regulating both gene expression and chromatin organization. Throughout, we primarily focus on stem cell–specific examples, notwithstanding that this is a nascent field. We conclude by highlighting open questions and pointing the way to enhanced research efforts to understand the role nuclear mechanotransduction plays in cell fate choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号