首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cryptic citrate transport gene (citA) from Salmonella typhimurium chromosome was cloned and its nucleotide sequence was determined. The cloned plasmid conferred citrate-utilizing ability on wild-type Escherichia coli, which cannot grow on citrate as the sole source of carbon. The resultant E. coli transformant was able to transport citrate. A 1,302-base-pair open reading frame with a preceding ribosomal binding site was found in the cloned DNA fragment. The 434-amino-acid protein that could be translated from this open reading frame is highly hydrophobic (69% nonpolar amino acid residues), consistent with the fact that the transport protein is an intrinsic membrane protein. The molecular weight of this protein was calculated to be 47,188. The gene sequence determined is highly homologous to those of Cit+ plasmid-mediated citrate transport gene, citA, from E. coli, the chromosomal citA gene from Citrobacter amalonaticus and the chromosomal cit+ gene from Klebsiella pneumoniae. The hydropathy profile of the deduced amino acid sequence suggests that this carrier has 12 hydrophobic segments, which may span the membrane lipid bilayer.  相似文献   

2.
The nucleotide sequences of insertion sequences IS3411L (left) and IS3411R (right), present as direct terminal repeats in the citrate utilization of citrate utilization transposon Tn3411, and of IS3411 (generated by intramolecular recombination between IS3411L and IS3411R) were determined. The three IS3411 elements (IS3411R, IS3411L, and IS3411) were 1,309 base pairs long and identical in DNA sequence. IS3411 had 27-base-pair terminal inverted repeats with three bases mismatched and one long open reading frame (240 amino acids) that was proposed to be a transposase. Three polypeptides of 29,000, 27,000, and about 10,000 molecular weight, determined by IS3411, were identified in minicells. Since Tn3411 generates a 3-base-pair repeat upon integration, the nucleotide sequences of IS3411 were compared with those of IS3.  相似文献   

3.
The citrate utilization determinant from transposon Tn3411 has been cloned and sequenced, and its polypeptide products have been characterized in minicell experiments. The nucleotide sequence was determined for a 2,047-base-pair BglII restriction endonuclease fragment that includes the citrate determinant. This region contains an open reading frame that would encode a 431-amino-acid very hydrophobic polypeptide and which is preceded by a reasonable ribosomal binding site. However, the single polypeptide found in minicell experiments had an apparent molecular weight of 35,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

4.
Chromosomal mutation for citrate utilization by Escherichia coli K-12.   总被引:15,自引:10,他引:5       下载免费PDF全文
A mutant strain of Escherichia coli K-12 that utilizes citrate as a sole source of carbon and energy was isolated. Citrate utilization arose as the consequence of two mutations in genes citA and citB, which are linked to the gal operon. The mutant strain expresses a semiconstitutive citrate transport system, and it utilizes both citrate and isocitrate as carbon and energy sources. It is capable of utilizing cis- and trans-aconitate, but only if it is preinduced by growth on citrate.  相似文献   

5.
6.
The chromosomal DNA fragment (BamHI-BglII fragment of 2,972 base pairs) conferring citrate utilization in Citrobacter amalonaticus ATCC 25405 was cloned and sequenced. Two genes (citA and citB) identified in the Cit+ determinant were found in a BamHI-BglII fragment from C. amalonaticus. Southern DNA-DNA hybridization experiments and the construction of Cit- mutants of C. amalonaticus showed that C. amalonaticus has a single copy of the cit gene on the chromosome.  相似文献   

7.
8.
9.
To investigate the evolutionary relationships between the aph(3') genes from different plasmids, the nucleotide sequence of the aph(3') gene from the E. coli R plasmid was determined and compared with the known aph(3') genes of Tn903 and Tn4352. Three point mutations in the structural part of the cloned aph(3') gene caused amino acid changes in the enzyme molecule at positions 19, 27 and 48 beginning from the start codon. The structural part of the gene was followed by two stop codons and a long DNA region containing no nucleotide sequences homologous to the sequences of Tn903 or Tn4352. Both the cloned aph(3') gene and Tn4352 were limited on the left by the spacer sequence and the insertion sequence IS176. Twenty one base pairs deletion abolished the -35 sequence of the promoter suggested for the aph(3') gene of Tn4352 and resulted in formation of a fusion promoter utilizing the -35 box of IS176 and the -10 box of the aph(3') gene. The distance between the -35 and -10 sequences changed from 18 to 17 bp. Changes in the cloned aph(3') gene and the flanking DNA regions resulted in formation of a new promoter and loss of the right IS176 element.  相似文献   

10.
We have isolated a new transposon, Tn3411, encoding citrate-utilizing ability, from a naturally occurring citrate utilization (Cit) plasmid, pOH3001. Citrate transposon Tn3411 was transposed from pOH3001 to lambda b519 b515 cI857 S7 (abbreviated lambda bb) phage, and further from the resulting lambda bb:Tn3411 to a vector plasmid, pBR322, in recA-deficient strains. The Cit+ plasmids (pOH2 and pOH3) constructed by the integration of Tn3411 into pBR322 were examined by restriction endonuclease and heteroduplex analysis. The results obtained were as follows: (i) Tn3411 was 7.4 kilobases long and flanked by small inverted repeats, and it contained one more pair of inverted repeats at the opposite orientation in the internal region, thus making alternate repeats; and (ii) the Cit+ structure gene was located on the fragment (5.5 kilobases) between two SalI cleavage sites on Tn3411.  相似文献   

11.
12.
13.
Q M Yi  J Lutkenhaus 《Gene》1985,36(3):241-247
  相似文献   

14.
15.
16.
17.
18.
19.
Rhizobium japonicum nitrogenase Fe protein gene (nifH).   总被引:15,自引:6,他引:9       下载免费PDF全文
  相似文献   

20.
Broad-host-range plasmid RK2 encodes several kil operons (kilA, kilB, kilC, kilE) whose expression is potentially lethal to Escherichia coli host cells. The kil operons and the RK2 replication initiator gene (trfA) are coregulated by various combinations of kor genes (korA, korB, korC, korE). This regulatory network is called the kil-kor regulon. Presented here are studies on the structure, product, and expression of korC. Genetic mapping revealed the precise location of korC in a region near transposon Tn1. We determined the nucleotide sequence of this region and identified the korC structural gene by analysis of korC mutants. Sequence analysis predicts the korC product to be a polypeptide of 85 amino acids with a molecular mass of 9,150 daltons. The KorC polypeptide was identified in vivo by expressing wild-type and mutant korC alleles from a bacteriophage T7 RNA polymerase-dependent promoter. The predicted structure of KorC polypeptide has a net positive charge and a helix-turn-helix region similar to those of known DNA-binding proteins. These properties are consistent with the repressorlike function of KorC protein, and we discuss the evidence that KorA and KorC proteins act as corepressors in the control of the kilC and kilE operons. Finally, we show that korC is expressed from the bla promoters within the upstream transposon Tn1, suggesting that insertion of Tn1 interrupted a plasmid operon that may have originally included korC and kilC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号